摘要
Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba_(2)Na_(3)(B_(3)O_(6))_(2)F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F into the BaB_(2)O_(4),Na BO_(2), and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F at 3 GPa and its decomposition into BaB_(2)O_(4), NaBO_(2), and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba_(2)Na_(3)(B_(3)O_(6))_(2)F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB_(2)O_(4).
基金
financially supported by the Russian Science Foundation (No.21-19-00097)。