期刊文献+

Recent advances in cathode catalyst architecture for lithium–oxygen batteries 被引量:2

原文传递
导出
摘要 Lithium–oxygen(Li–O_(2))batteries have great potential for applications in electric devices and vehicles due to their high theoretical energy density of 3500 Wh kg^(-1).Unfortunately,their practical use is seriously limited by the sluggish decomposition of insulating Li_(2)O_(2),leading to high OER overpotentials and the decomposition of cathodes and electrolytes.Cathode electrocatalysts with high oxygen reduction reaction(ORR)and oxygen evolution re-action(OER)activities are critical to alleviate high charge overpotentials and promote cycling stability in Li–O_(2)batteries.However,constructing catalysts for high OER performance and energy efficiency is always challenging.In this mini-review,we first outline the employment of advanced electrocatalysts such as carbon materials,noble and non-noble metals,and metal–organic frameworks to improve battery performance.We then detail the ORR and OER mechanisms of photo-assisted electrocatalysts and single-atom catalysts for superior Li–O_(2)battery performance.Finally,we offer perspectives on future development directions for cathode electrocatalysts that will boost the OER kinetics.
出处 《eScience》 2023年第4期65-80,共16页 电化学与能源科学(英文)
基金 supported by National Science Fund for Distinguished Young Scholars(No.52025133) Tencent Foundation through the XPLORER PRIZE,and the Fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP202004) China Postdoctoral Science Foundation(No.2021M700211).
  • 相关文献

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部