期刊文献+

A Two-Dimensional Third-Order CESE Scheme for Ideal MHD Equations

原文传递
导出
摘要 In this paper,we construct a two-dimensional third-order space-time conservation element and solution element(CESE)method and apply it to the magnetohydrodynamics(MHD)equations.This third-order CESE method preserves all the favorable attributes of the original second-order CESEmethod,such as:(i)flux conservation in space and time without using an approximated Riemann solver,(ii)genuine multi-dimensional algorithm without dimensional splitting,(iii)the use of the most compact mesh stencil,involving only the immediate neighboring cells surrounding the cell where the solution at a new time step is sought,and(iv)an explicit,unified space-time integration procedure without using a quadrature integration procedure.In order to verify the accuracy and efficiency of the scheme,several 2D MHD test problems are presented.The result of MHD smooth wave problem shows third-order convergence of the scheme.The results of the other MHD test problems show that the method can enhance the solution quality by comparing with the original second-order CESE scheme.
出处 《Communications in Computational Physics》 SCIE 2023年第6期94-115,共22页 计算物理通讯(英文)
基金 supported by the National Natural Science Foundation of China(Grant Nos.42030204,41874202) Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20220817152453003) Shenzhen Key Laboratory Launching Project(No.ZDSYS20210702140800001) the Specialized Research Fund for State Key Laboratories.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部