摘要
Electromagnetic interference shielding and thermal management by wearable devices show great po-tential in emerging digital healthcare.Conventional metal films implementing the functions must sacri-fice either flexibility or permeability,which is far from optimal in practical applications.In this work,an ultra-thin(15μm),flexible,and porous Cu/PLLA fibrous membrane is developed by depositing cop-per particles on the polymer substrate.With novel acetone&heat treatment procedure,the mem-brane is considerably stronger while maintaining the porous fibre structure.Its fantastic breathabil-ity and super high electrical conductivity(9471.8130 S/cm)enable the composites to have fast electri-cal heating characteristics and excellent thermal conductivity for effective thermal management.Mean-while,the porous polymer substrate structure greatly enhances the diffusion of conductive substances and increases the electromagnetic interference shielding effectiveness of the membranes(7797.98 dB cm^(2)/g at the H band and 8072.73 dB cm^(2)/g at the Ku band respectively).The composites present high flexibility,breathability,and strength with the functions of thermal management and electromag-netic shielding,showing great potential for future portable electronic devices and wearable integrated garments.
基金
We acknowledge the support of the Electron Microscopy Centre at The University of Manchester.