期刊文献+

航天员混合现实训练与支持技术研究 被引量:1

Study on Mixed Reality Training and Support Technology for Astronauts
下载PDF
导出
摘要 基于航天员地面单人便携训练、多人协同操作训练、空间在轨操作辅助支持以及远程协同支持等工程任务需要,开展混合现实训练与支持技术研究。设计了航天员混合现实训练与支持的工程实现总体技术框架,针对航天员地面训练环境、在轨任务环境以及远程支持环境等特殊因素,对混合现实头盔头部位姿实时估计技术、多人协同操作技术以及远程支持场景匹配等关键技术进行研究。试验验证和航天员体验表明,技术方法有效、用户体验良好,满足空间站航天员地面与长期在轨典型性训练和支持任务需求,提高了训练支持质量和效率。 Based on the requirements of single-person astronaut training,multi-person cooperative operation training,on-orbit operation auxiliary support,and remote cooperative support,the overall technical framework for implementing astronaut mixed reality training and support was proposed.Ai-ming at the special factors,such as the ground training environment,the on-orbit task environment,and the remote support environment,the real-time helmet pose estimation research was focused.Mo-reover,the cooperative operation in the same environment and the remote support in the matched scene were discussed.The tests and the astronaut experiences showed that the proposed technology was useful and an effective training model was provided.The MR training could satisfy the require-ments of typical training and support tasks both on the ground and in orbit.The proposed method could improve the quality and efficiency of astronaut operations.
作者 晁建刚 许振瑛 何宁 孙庆伟 魏源宏 胡帅星 CHAO Jiangang;XU Zhenying;HE Ning;SUN Qingwei;WEI Yuanhong;HU Shuaixing(National Key Laboratory of Human Factor Engineering,China Astronaut Research and Training Center,Beijing 100094,China;Department of Aerospace Science and Technology,Space Engineering University,Beijing 101416,China)
出处 《载人航天》 CSCD 北大核心 2023年第4期470-477,共8页 Manned Spaceflight
基金 人因工程重点实验室基金(SYFD062003,GJSD22007) 载人航天领域预先研究项目(18131060601)。
关键词 航天员 混合现实 位姿估计 场景匹配 astronaut mixed reality pose estimation scene matching
  • 相关文献

参考文献3

二级参考文献16

  • 1Azuma R, Baillot Y, Behringer R, et al. Recent advances in augmented reality. Comput Graph Appl, 2001, 21:34-47.
  • 2State A, Chen D T, Chris T, et al. Case study: observing a volume-rendered fetus within a pregnant patient. In: Proceeding of IEEE Visualization. Los Alamitos: IEEE Computer Society Press, 1994. 364-368.
  • 3Zaeh M, Vogl W. Interactive laser-projection for programming industrial robots. Manufact Tech, 2008, 57:37-40.
  • 4Stricker D, Daehne P, Seibert F, et al. Design and development issues for an archeoguide: an augmented reality based cultural heritage on-site guide. In: International Conference on Augmented, Virtual Environments and Three- Dimensional Imaging, Mykonos, Greece, 2001.
  • 5Papagiannakis G, Schertenleib S. Mixing virtual and real scenes in the site of ancient Pompeii. J Comput Animat Virtual Worlds, 2005, 16:11-24.
  • 6Julier S, Baillot Y, Lanzagorta M. BARS: batterfield augmented reality system. In: NATO Symposium on Information Processing Techniques for Military Systems. Istanbul: IEEE Computer Society Press, 2000. 9-11.
  • 7Gerhard R, Drummond T. Going out: robust model-based tracking for outdoor augmented reality. In: The Proceeding of Symposium on Augmented Reality. Santa Barbara: IEEE Computer Society Press, 2006. 109-118.
  • 8Simon G, Fitzgibbon A, Zisserman A. Markerless tracking using planar structures in the scene. In: Proc International Symposium on Augmented Reality, Munich, 2000.
  • 9Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60:91-110.
  • 10Lepetit V, Pilet J, Fua P. Point matching as a classification problem for fast and robust object pose estimation. In: Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society Press, 2004. 244-250.

共引文献19

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部