期刊文献+

BT逆的位移结构

Displacement Structure of the BT Inverse
原文传递
导出
摘要 主要研究BT逆的位移结构,在值域和零空间的限制条件下,讨论BT逆的Sylvester位移秩和广义位移秩的估计.同时,还给出了位移的计算,并将结论应用于广义Cauchy矩阵. In this paper,we study the displacement structure of the BT inverse.Both the estimates for the Sylvester displacement rank and the generalized displacement are discussed under the restrictions of the range and null spcace.Moreover,the computation of the displacement is also considered.Finally,the results are applied to the generalized Cauchy matrices.
作者 何梦宇 刘晓冀 靳宏伟 HE Meng-yu;LIU Xiao-ji;JIN Hong-wei(School of Mathematics and Physics,Guangxi Minzu University,Nanning 530006,China)
出处 《数学的实践与认识》 2023年第7期228-237,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(12061015) 广西科技基地和人才专项基金(桂科AD20159016,桂科AD21220024) 广西自然科学基金(2018GXNSFDA281023)。
关键词 BT逆 Sylvester位移秩 广义Cauchy矩阵 the BT inverse Sylvester displacement the generalized Cauchy matrices
  • 相关文献

参考文献2

二级参考文献11

  • 1Ben-Israel A and Greville T N E. Generalized Inverses: Theory and Applications[M]. Wiley, New York, 1974.
  • 2Diao H, Wei Y, Qiao S. Displacement rank of the Drazin inverse[J]. Journal of Computational and Applied Mathematics, 2004, 167: 147-161.
  • 3Heinig G, Hellinger F. Displacement structure of pseudoinverses[J]. Linear Algebra Appl., 1994, 197-198: 623-649.
  • 4Udwadia F E, Phohomsiri P. The recursive determination of the generalized Moore- PenroseM-inverse of a matrix[J]. Journal of Optimization Theory and Applications, 2005, 127(3): 639-663.
  • 5Phohomsiri P, Han B. An alternative proof for the recursive formulae for computing the Moore - Penrose M-inverse of a matrix[J]. Applied Mathematics and Computation, 2006, 174: 81-97.
  • 6Qin M, Wang G. Displacement structure of W-weighted Drazin inverse AD and its perturbation[J]. Applied Mathematics and Computation[J]. 2005, 16: 403-419.
  • 7Wang G, Wei Y, Qiao S. Generalized Inverses:Theory and Computations [M]. Science Press, China, 2004.
  • 8Wei Y. Integral representation of the W-weighted Drazin inverse[J]. Appl. Math. Comput., 2003, 144: 3-10.
  • 9Wei Y, Ng M K. Displacement structure of group inverses[J]. Numer. Linear Algebra Appl., 2005, 12: 103-110.
  • 10Zhou J, Zhu Y, Rong L X, You Z. Variant of the Greville formula with applications to exact recursive least squares[J]. SIAM Journal on Matrix Analysis Applications, 2002, 24(1): 150-164.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部