期刊文献+

基于多尺度Retinex的道路交通模糊图像增强方法 被引量:1

Road Traffic Fuzzy Image Enhancement Method Based on Multi-scale Retinex
下载PDF
导出
摘要 由于车速过快或成像距离较远,道路交通监控图像模糊,在提取图像时存在不完整、误提取及对比度低等问题。为此,提出一种基于多尺度Retinex的道路交通模糊图像增强方法。利用剪切波变换法将图像分解成低频分量与高频分量2个部分。采用线性映射将低频系数映射到特定区间内做正规化处理,并利用多尺度Retinex增强低频分量;利用鲁棒中值法与硬阈值收缩法除去高频分量中各尺度、各方向上的噪声和光照干扰。使用模糊对比度、线性隶属度函数融合2个部分的图像,最终得到增强后的清晰图像。实验结果表明,所提方法可以优化图像视觉效果,突出图像细节特征,具有良好抑噪性能;与对比生成式对抗网络方法、特征金字塔方法相比,所提方法增强后的图像的峰值信噪比、结构相似性、信息熵、平均梯度及空间频率均更优。 Due to the fast speed or long imaging distance,the road traffic monitoring image is blurred,and there are some problems such as incomplete,wrong extraction and low contrast when extracting the image.Therefore,a road traffic fuzzy image enhancement method based on multi-scale Retinex is proposed.The image is decomposed into low frequency component and high frequency component by Shearlet transform.Linear mapping is used to map the low-frequency coefficients to a specific interval for normalization,and multi-scale Retinex is used to enhance the low-frequency components.Robust median method and hard threshold shrinkage method are used to remove noise and illumination interference in each scale and direction of high frequency component.The fuzzy contrast and linear membership function are used to fuse the two parts of the image,and finally the enhanced clear image is obtained.The experimental results show that the proposed method can optimize the image visual effect,highlight the image detail features,and has good noise suppression performance.Compared with the generative adversarial network method and the feature pyramid method,the peak signal-to-noise ratio,structural similarity,information entropy,average gradient and spatial frequency of the image are better.
作者 潘文 吴锦华 PAN Wen;WU Jin-hua(Department of Information Engineering,Xuancheng Vocational and Technical College,Xuancheng 242000,China;School of Computer and Software Engineering,Anhui Institute of Information Technology,Wuhu 241000,China)
出处 《辽东学院学报(自然科学版)》 CAS 2023年第2期142-148,共7页 Journal of Eastern Liaoning University:Natural Science Edition
基金 安徽省高校科学研究项目(2022AH052783) 2022年高校优秀青年人才支持计划项目(gxyq2022147)。
关键词 图像处理 剪切波变换 高频分量 低频分量 增强处理 灰度值 image processing Shearlet transform high frequency component low frequency component enhanced treatment gray value
  • 相关文献

参考文献13

二级参考文献108

共引文献130

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部