期刊文献+

有源区Be掺杂对1.3μm InAs量子点激光器性能的影响

Effect of Be doping in active regions on the performance of 1.3μm InAs quantum dot lasers
下载PDF
导出
摘要 利用分子束外延技术在GaAs(100)衬底上生长了1.3μm InAs DWELL量子点激光器结构,研究了有源区Be掺杂对量子点激光器性能的影响。研究表明,对有源区进行Be掺杂可以有效降低InAs量子点激光器的阈值电流密度,提升激光器的输出功率,增加激光器的温度稳定性。研制的Be掺杂InAs量子点激光器的阈值电流降低到12mA,相应的阈值电流密度仅为100 A/cm2,激光器的最高输出功率达到183 mW,最高工作温度达到了130℃。这对InAs量子点激光器器件在光通信系统中的应用具有重要意义。 InAs DWELL quantum dot lasers were grown on GaAs(100)substrate by molecular beam epitaxy technology.The effect of Be doping in active regions on the performance of InAs quantum dot lasers has been studied.The results show that Be-doped in the active region could effectively reduce the threshold current density,improve the output power,and increase the temperature stability of the InAs quantum dot laser.The threshold current of Be-doped InAs quantum dot laser was reduced to 12 mA,and the corresponding threshold current density was 100 A/cm2.The highest output power of the laser was 183 mW,and the highest operating temperature reached 130℃.This is of great significance for the application of InAs quantum dot laser device in the optical communication system.
作者 杜安天 曹春芳 韩实现 王海龙 龚谦 DU An-Tian;CAO Chun-Fang;HAN Shi-Xian;WANG Hai-Long;GONG Qian(School of Physics and Physical Engineering,Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Qufu Normal University,Qufu 273165,China;Key Laboratory of Terahertz Solid State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2023年第4期450-456,共7页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(61674096)。
关键词 量子点激光器 分子束外延 阈值电流密度 输出功率 特征温度 quantum-dot laser molecular beam epitaxy threshold current density output power characteristic temperature
  • 相关文献

参考文献5

二级参考文献19

  • 1V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).
  • 2D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R, Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Z. I. Alferov, Thin Solid Films 367, 235 (2000).
  • 3S. Li, Q. Gong, X. Wang, L. Yue, O. Liu, and H. Wang, Chin. Opt. Lett. 10, 041406 (2012).
  • 4M. Dezhkam and A. Zakery, Chin. Opt. Lett. 10 121901 (2012).
  • 5N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Max- imov, P. S. Kop'ev, and Z. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).
  • 6D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. 73, 2564 (1998).
  • 7P. Bhattacharya, Z. Mi, J. Yang D. Basu, and D. Saha, J. Cryst. Growth 311, 1625 (2009).
  • 8S. G. Li, Q. Gong, Y. F. Lao, K. He, J. Li, Y. G. Zhang, S. L. Feng, and H. L. Wang, Appl. Phys. Lett. 93, 111109 (2008).
  • 9Z. Mi, P. Bhattacharya, and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).
  • 10J. Yang, P. Bhattacharya, Z. Mi, G. Qin, and Z. Ma, Chin. Opt. Lett. 6, 727 (2008).

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部