期刊文献+

基于改进随机漫步者非凸秩逼近最小化的复杂背景下红外点目标检测方法研究

The infrared point target detection algorithm based on modified random walker and non-convex rank approximation minimization under the complex background
下载PDF
导出
摘要 红外点目标检测是红外制导系统的关键技术之一,是军事应用领域的研究热点。一方面,点目标在大气传输和散射过程中由于观测距离长,常常淹没在背景杂波和大噪声中,信噪比低。另一方面,图像中的目标以模糊点的形式出现,使得目标没有明显的特征和纹理信息。由于不同红外图像中的点目标具有不同的外观、形状和姿态,加之噪声杂波的干扰遮挡,经过单帧检测后,除了真实目标外,图像中可能有虚假目标和一些强噪声。因此,由于这几个因素,红外点目标检测变得非常困难。为了解决这一问题,作者研究了红外点目标检测的相关方法,提出了非凸秩逼近最小化方法(NRAM)与改进的随机漫步者方法(MRW)相结合的方法(NRAM-MRW),在复杂的红外背景下,针对红外点目标的检测中有着较好的检测效果。 Infrared point target detection is one of the key technologies of the infrared guidance system.On the one hand,due to the long observation distance,the point target is often submerged in the background clutter and large noise in the process of atmospheric transmission and scattering,and the signal-to-noise ratio is low.On the other hand,the target in the image appears in the form of fuzzy points,so that the target has no obvious features and texture information.Therefore,due to these two factors,infrared point target detection becomes intensely difficult.In order to address the issue,the relevant algorithms of point infrared target detection are studied,and a combination algorithm of non-convex rank approximation minimization algorithm and the modified random walker algorithm(NRAM-MRW)is proposed,which has a better detection effect of point infrared target detection under complex background.
作者 王坤 蒋德富 云利军 伍凌帆 WANG Kun;JIANG De-Fu;YUN Li-Jun;WU Ling-Fan(School of Information Science and Technology,Yunnan Normal University,Kunming 650500,China;College of Computer and Information,Hohai University,Nanjing 211100,China;Institute of Microelectronic Technology of Kunshan,Chinese Academy of Sciences,Kunshan 215347,China)
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2023年第4期546-557,共12页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(61966040) 云南省科技厅青年项目(2013FD016)。
关键词 红外图像 点目标检测 NRAM 随机漫步者 infrared image point target detection NRAM random walker
  • 相关文献

参考文献3

二级参考文献14

  • 1边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2005:235-237.
  • 2Lan J H, Yang X. Infrared small target detection based on danger theory[ C ]// Proceeings of International Conference on Optical Instruments and Technology. Bellingham:Society of Photo-Opti- cal Instrumentation Engineers,2009:75131C-1-9.
  • 3Gao K L, Mei D. A small target detection algorithm based on im- mune computation and infrared background suppression [ C ]// Proceedings of the 3th International Conference on Natural Com- putation. Piscataway:Inst. of Elec. and Elec. Eng. Computer Society ,2007:630-634.
  • 4Leandro N C, Femando J Z. An evolutionary immune network for data clustering [ C ]//The 6th Brazilian Symposium on Neural Networks. Piscataway:Inst. of Elee. and Elee. Eng. ComputerSociety,2000 : 84-89.
  • 5Luo J H,Ji H B,Liu J. An algorithm based on spatial filter for in- frared small target detection and its application to an all direction- al IRST system[ C ]//Proceedings of the 27th International Con- gress on High-Speed Photography and Photonics. Bellinghaxn:So- ciety of Photo-Optical Instrumentation Engineers, 2007 : 62793E- 1-6.
  • 6Li T, Zhang J, Zhang C F, et al. Study on the detection of infrared small dim targets based on DMMFs [ C ]//Proceedings of Interna- tional Conference on Space Information Technology. Bellingham: Society of Photo-Optical Instrumentation Engineers, 2005 : 59853R-1-6.
  • 7Yang Y,Yang X F,Wang B X,et al. A robust approach for de- tecting infrared small dim targets [ C ]//Proceeding of Electronic Imaging and Multimedia Technology. Bellingham : Society of Pho- to-Optical Instrumentation Engineers ,2007:68332B-1-6.
  • 8Maddalena L, Petrosino A. A self-organizing approach to back- ground subtraction for visual surveillance applications [ J ]. IEEE Transactions on Image Processing,2008,17 (7) : 1168-1177.
  • 9吴一全,罗子娟,吴文怡.基于NSCT的红外图像小目标检测技术[J].中国图象图形学报,2009,14(3):477-481. 被引量:18
  • 10袁红刚,孙卫东.基于多阈值分类与逆向求证的红外序列图像弱小目标检测方法[J].中国图象图形学报,2009,14(8):1583-1589. 被引量:5

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部