摘要
In natural systems,water transport across the cellular plasma membranes is mainly mediated by naturally occurring channel protein aquaporins(AQPs),which lead to a series of important physiological functions including cell migration.The construction of artificial analogs of the natural AQPs would generate a new strategy for treating AQP-related diseases.In this report,an artificial water channel has been developed from a unimolecular tubular molecule,which featured structural encapsulation of a single-file water wire composed of oppositely orientated dipolar water molecules.This AQP-like structure endowed the artificial channel in living cells with AQP-like water permeability and selectivity.Interestingly,the artificial channel coupled with cell protrusion formation by mediating water transmembrane transport,leading to cell shape change and migration acceleration.The artificial channel-facilitated cell migration showed application in enhancing in vivo healing of traumatic injury.
基金
the National Natural Science Foundation of China(NSFC)(grant nos.21921003,82071043,and 21725202)
the Science and Technology Commission of Shanghai Municipality(STCSM,grant nos.22JC1403700 and 22JC1403702)for financial support.