期刊文献+

基于小波神经网络的供水预测研究与应用

Research and Application of Water Supply Prediction Based on WaveletNeural Network
下载PDF
导出
摘要 针对城镇供水预测不准确的问题,设计开发了一种基于小波变换的时间序列神经网络供水预测系统。首先使用小波变换提取供水流量曲线的规律性,去除流量数据中的高频噪声,并对假期变量和天气温度变量进行非线性处理,对比分析表明模型加入小波变换后,预测准确率显著提高,同时该系统可以计算流量实际值与预测值的实时差值,比较差值和设定阈值判断供水异常情况。经验证,该系统供水预测准确率达到95.9%,可为供水预测和供水异常识别提供决策支持。 Aiming at the problem of inaccurate urban water supply forecasting,a time series neural network water supply forecasting systerm based on wavelet transform was designed and developed.Firstly,the system uses wavelet transform to summarize the regularity of water supply flow curve and remove the high-frequency noise in the flow data.Then,nonlinear processing was carried out on the holiday variable and weather temperature variable.Comparative analysis proves that the forecasting accuracy was significantly improved after the introduction of wavelet transform to the model.At the same time,the system can calculate the real-time difference between the actual flow value and the predicted flow value.When the difference exceeds the set threshold,the water supply is considered abnormal.The actual data verify that the water supply forecasting accuracy of the system reaches 95.9%,which can provide suggestions for final decision for water supply forecasting and water supply anomaly recognition.
作者 曾启城 ZENG Qicheng(Yangtze Three Gorges Water Service(Yichang)Company Limited,Yichang 443002,China)
出处 《供水技术》 2023年第4期6-9,共4页 Water Technology
关键词 供水预测 小波变换 时间序列神经网络 非线性函数 water supply forecast wavelet transform time series neural network nonlinear function
  • 相关文献

参考文献3

二级参考文献21

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部