期刊文献+

基于IPSO算法的KK分布模型参数估计

Parameter estimation of KK distribution model based on IPSO algorithm
下载PDF
导出
摘要 目的提出一种IPSO(Improved Particle Swarm Optimization)算法,估计服从KK分布的海杂波建模参数,以改善复杂海况下海杂波幅度统计模型的建模精度。方法通过设计目标损失函数、更新公式等方法,获得了IPSO算法,然后利用IPSO算法对模型参数进行最优或次优取值估计。结果与结论仿真和实测海杂波数据集实验表明,所提方法克服了KK分布的多参数难于通过解析法求解参数的问题,有效解决了非线性分布海杂波模型的重“拖尾”拟合精度偏低的问题,且该算法能够更快地收敛到理想取值。 Purposes—To improve the modeling accuracy of the statistical model of sea clutter under complex sea conditions by proposing an Improved Particle Swarm Optimization(IPSO)algorithm to estimate the parameters of the sea clutter model obeying KK distribution.Methods—IPSO algorithm is obtained by designing objective loss function and updating formula.Then the improved algorithm is used to estimate the optimal or suboptimal values of the model parameters to improve the modeling accuracy.Results and Conclusions—The dataset experiments of imitative and measured sea clutter show that not only does the proposed method overcome the problem that it is difficult to solve the parameters of the multiple parameters of KK distribution with the analytical method,and effectively solve the problem of low fitting accuracy of heavy tail of nonlinear-distributed sea clutter model,but also the algorithm can converge to the ideal value faster.
作者 孙庆 杨雪婷 薛春岭 赵静 SUN Qing;YANG Xue-ting;XUE Chun-ling;ZHAO Jing(School of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,Shaanxi,China;Nuclear Engineering College,Rocket Force University of Engineering,Xi'an 710005,Shaanxi,China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2023年第2期1-7,共7页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 陕西省自然科学基金项目(2018JQ1046) 宝鸡文理学院重点项目(ZK2017022)。
关键词 参数估计 IPSO算法 KK分布 海杂波建模 parameter estimation IPSO algorithm KK distribution sea clutter modelization
  • 相关文献

参考文献4

二级参考文献32

  • 1欧阳文,何友,靳煜.基于统计模型的时-空相关海杂波仿真[J].系统仿真学报,2006,18(2):467-471. 被引量:15
  • 2石志广,周剑雄,付强.K分布海杂波参数估计方法研究[J].信号处理,2007,23(3):420-424. 被引量:18
  • 3Banerjee A, Burlina P, Chellappa R. Adaptive target detection in fo liage-penetrating SAR images using alpha-stable models [J]. IEEE Trans. on Image Processing, 1999, 8(12): 1823-1831.
  • 4Tison C, Nicolas J M, Tupin F, et al. New statistical model for Markovian classification of urban areas in high-resolution SAR images [J].IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(10): 2046-2057.
  • 5Achim A, Kuruoglu E E, Zerubia J. SAR image filtering based on the heavy-tailed Rayleigh model [J]. IEEE Trans. on Image Processing, 2006, 15(9): 2686-2693.
  • 6Jao J K. Amplitude distribution of composite terrain radar clut- ter and the K distribution [J]. IEEE Trans. on Antennas and Propagation, 1984, 32(10) : 1049 - 1062.
  • 7Watts S. Radar detection prediction in sea clutter using the compound K distribution model [J]. Communications, Radarand Signal Pro cessing, 1985, 132(7):613- 620.
  • 8Middleton D. New physical statistical methods and models for clutter and reverberation: the KA distribution and related proba- bility structures [J].IEEE Journal of Oceanic Engineering,1999, 24(3): 261 -284.
  • 9Watts S, Ward K D, Tough R J A. The physics and modeling of discrete spikes in radar sea clutter [C]//Proc. of the Interna- tional Radar Conference, 2005 : 72 - 77.
  • 10Ward K D, Tough R J A. Radar detection performance in sea clutter with discrete spikes [C] // Proc. of the International Ra dar Conference, 2002 : 253 - 257.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部