期刊文献+

基于LMD近似熵和改进PSO-ELM的轴承故障诊断 被引量:1

Bearing Fault Diagnosis Based on LMD Approximate Entropy and Improved PSO-ELM
下载PDF
导出
摘要 针对滚动轴承故障特征提取与故障识别困难的问题,提出局部均值分解(LMD)近似熵和改进粒子群优化的极限学习机(PSO-ELM)结合的滚动轴承故障诊断方法。将不同工况信号用LMD分解为一系列乘积分量,不同工况的信号在不同频带的近似熵值会发生改变,结合相关性系数选出前3个分量,计算近似熵定值作为输入的特征向量。针对PSO早熟收敛的缺点,引入自适应权重法与DE算法对PSO进行改进,将特征值输入到改进PSO-ELM网络模型中,对滚动轴承不同工况进行故障识别与分类。结果表明,基于LMD近似熵和改进粒子群优化的ELM不仅能够识别滚动轴承的故障类型,并且有更高的分类正确率,验证了该方法的可行性。 Aiming at the difficulty of fault feature extraction and fault identification of rolling bearing,a fault diagnosis method for rolling bearings based on local mean decomposition(LMD)approximate entropy and improved particle swarm optimization based extreme learning machine(PSO-ELM)was proposed.The signals under different working conditions were decomposed into a series of multiplicative components by LMD.The approximate entropy values of the signal under different working conditions changed in different frequency bands.Combined with the correlation coefficient,the first three components were selected,and the approximate entropy value was calculated as the input eigenvector.Aiming at the shortcomings of premature convergence of PSO,the adaptive weight method and DE algorithm were introduced to improve the PSO,and the eigenvalues were input into the improved PSO-ELM network model,the fault identification and classification was performed for different working conditions of rolling bearings.The results show that the ELM based on LMD approximate entropy and improved particle swarm optimization can not only identify the fault types of rolling bearings,but also have a higher classification accuracy,which verifies the feasibility of the method.
作者 卞东学 张金萍 BIAN Dongxue;ZHANG Jinping(School of Mechanical and Power Engineering,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China)
出处 《机床与液压》 北大核心 2023年第14期227-232,共6页 Machine Tool & Hydraulics
关键词 局部均值分解 近似熵 改进PSO-ELM 故障诊断 Local mean decomposition Approximate entropy Improved PSO-ELM Fault diagnosis
  • 相关文献

参考文献6

二级参考文献35

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2Zhao Yunxin, Les E At- las, Robert J Marks. The use of cone-shaped kernels for generalized timefrequency representation of nonstationary signals [J]. IEEE Trans. On ASSP, 1990, 38 (7): 1084 - 1091.
  • 3Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [J]. Proe. R. Soe. Lond. A, 1998, 454 : 903 - 994.
  • 4Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum [ J]. Annu. Rev. Fluid Mech., 1999, 31:417-455.
  • 5Loh C H, Wu T C, Huaug N E. Application of the empirical mode decomposition - Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response [ J]. Bulletin of the Seismological Society of American, 2001, 91(5): 1339-1352.
  • 6Marcus D, Torsten S. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves [ J ]. Ocean Engineering, 2004, 31 ( 14 - 15) : 1783 - 1834.
  • 7Smith J S. The local mean decomposition and its application to EEG perception data [ J ]. Journal of the Royal Society Interface, 2005, 2 (5) : 443 - 454.
  • 8王珍,郭方,江亲瑜.EMD的LabVIEW实现及其在滚动轴承故障诊断中的应用[J].噪声与振动控制,2009,29(4):54-57. 被引量:12
  • 9邓万宇,郑庆华,陈琳,许学斌.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287. 被引量:162
  • 10蔡磊,程国建,潘华贤.极限学习机在岩性识别中的应用[J].计算机工程与设计,2010,31(9):2010-2012. 被引量:33

共引文献149

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部