期刊文献+

自适应近邻局部比值和线性判别分析算法 被引量:2

Adaptive Neighbor Local Ratio Sum Linear Discriminant Analysis
下载PDF
导出
摘要 在机器学习和模式识别中,降维能够显著提升分类器的判别性能与效率。比率和(ratio sum,RS)是线性判别分析(linear discriminant analysis,LDA)的一种全新变体,它试图使投影矩阵在每个维度上都达到最优。但RS并没有考虑到数据的局部几何结构,这就可能导致无法求得最优解。为了克服RS的这一缺点,提出了一种自适应近邻局部比值和线性判别分析算法(adaptive neighbor local ratio sum linear discriminant analysis,ANLRSLDA)。该算法使用自适应近邻的构图方法构建邻接矩阵,保留数据的局部几何结构完成了数据类间及类内矩阵的构建,从而更好地找到数据的最优表示;并且该方法采用有效的无核参数邻域分配策略来构造邻接矩阵,避免调整热核参数的需要。在UCI数据集及人脸数据集进行了对比实验,验证了该算法的有效性。 In machine learning and pattern recognition,dimension reduction can significantly improve the discriminative performance and efficiency of the classifier.Ratio sum(RS)is a completely new variant of linear discriminant analysis(LDA)that tries to optimize the projection matrix in every dimension.However,the RS does not take into account the local geometry of the data,which may lead to the failure to obtain the optimal solution.To overcome this disadvantage of RS,an adaptive neighbor local ratio sum linear discriminant analysis algorithm is proposed.The algorithm uses the adaptive neighbor composition method to construct the neighbor matrix,retains the local geometric structure of the data to complete the construction between and within the data matrix,so as to better find the optimal representation of the data.And the method adopts the effective kernel-free parameter neighborhood allocation strategy to construct the neighbor matrix,to avoid the need to adjust the heat core parameters.Finally,comparative experiments on the UCI dataset verifies the effectiveness of the algorithm.
作者 张家乐 林浩申 周科艺 孙博 杨晓君 ZHANG Jiale;LIN Haoshen;ZHOU Keyi;SUN Bo;YANG Xiaojun(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China;Unit 96901 of PLA,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第15期115-122,共8页 Computer Engineering and Applications
基金 科技部重大研发计划(2018YFB1802100) 广东省重大研发计划(018B010115001) 广东省自然科学基金面上项目(2021A1515011141) 国家自然科学基金青年项目(61904041)。
关键词 降维 比值和 线性判别分析 自适应近邻 dimensionality reduction ratio sum(RS) linear discriminant analysis(LDA) adaption neighbor comparative
  • 相关文献

参考文献2

二级参考文献20

  • 1Turk M,Pentland A.Eigenface for recognition[J].Joumal of Cognitive Neuroscience, 1991,3 ( 1 ) : 72-86.
  • 2Belhumeur P,Hespanha J,Kriegman D.Eigenfaces vs.Fisherfaces: recognition using class specific linear projection[J].Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711-720.
  • 3Tenenbaum J B,De Silva V, Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000,290(5500) : 2319-2323.
  • 4Roweis S L, Saul L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500) :2323-2326.
  • 5Belkin M,Niyogi ELaplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003, 15 (6) :1373-1396.
  • 6Bengio Y, Palement J, Vincent P, et al.Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering[J].Neural Computation,2004,16(10) : 2179-2219.
  • 7He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face recognition using Laplacianfaces[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(3) :328-340.
  • 8Yang Jian, Zhang D, Yang Jingyu, et al.Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(4) :650-664.
  • 9Yan Shuicheng,Xu Dong,Zhang Benyu, et al.Graph embedding and extensions:a general framework for dimensionality reduction[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007,29(1):40-51.
  • 10Qiu H N,Lai J H,Huang J,et al.Semi-supervised discriminant analysis based on UDP regularization[C]//Proc of the 19th International Conference on Pattern Recognition.Tampa: IEEE, 2008 : 1-4.

共引文献5

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部