摘要
相对于传统人工神经网络(ANN),脉冲神经网络(SNN)具有生物可解释性、计算效率高等优势。然而,对于目标检测任务,SNN存在训练难度大、精度低等问题。针对上述问题,该文提出一种基于动态阈值LIF神经元(DT-LIF)与单镜头多盒检测器(SSD)的SNN目标检测方法。首先,设计了一种DT-LIF神经元模型,该模型可根据累积的膜电位动态调整神经元的阈值,以驱动深层网络的脉冲活动,提高推理速度。同时,以DT-LIF神经元为基元,构建了一种基于SSD的混合SNN。该网络以脉冲视觉几何群网络(Spiking VGG)和脉冲密集连接卷积网络(Spiking DenseNet)为主干(Backbone),具有由批处理归一化(BN)层、脉冲卷积(SC)层与DT-LIF神经元构成的3个额外层和SSD预测框头(Head)。实验结果表明,相对于LIF神经元网络,DT-LIF神经元网络在Prophesee GEN1数据集上的目标检测精度提高了25.2%。对比AsyNet算法,所提方法的目标检测精度提高了17.9%。
Compared with traditional Artificial Neural Network(ANN),the Spiking Neural Network(SNN)has advantages of bioligical reliability and high computational efficiency.However,for object detection task,SNN has problems such as high training difficulty and low accuracy.In response to the above problems,an object detection method with SNN based on Dynamic Threshold Leaky Integrate-and-Fire(DT-LIF)neuron and Single Shot multibox Detector(SSD)is proposed.First,a DT-LIF neuron is designed,which can dynamically adjust the threshold of neuron according to the cumulative membrane potential to drive spike activity of the deep network and imporve the inferance speed.Meanwhile,using DT-LIF neuron as primitive,a hybrid SNN based on SSD is constructed.The network uses Spiking Visual Geometry Group(Spiking VGG)and Spiking Densely Connected Convolutional Network(Spiking DenseNet)as the backbone,and combines with SSD prediction head and three additional layers composed of Batch Normalization(BN)layer,Spiking Convolution(SC)layer,and DT-LIF neuron.Experimental results show that compared with LIF neuron network,the object detection accuracy of DT-LIF neuron network on the Prophesee GEN1 dataset is improved by 25.2%.Compared with the AsyNet algorithm,the object detection accuracy of the proposed method is improved by 17.9%.
作者
周雅
栗心怡
武喜艳
赵宇飞
宋勇
ZHOU Ya;LI Xinyi;WU Xiyan;ZHAO Yufei;SONG Yong(School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第8期2722-2730,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金(82272130,U22A20103)。
关键词
计算机视觉
目标检测
脉冲神经网络
神经元
Computer vision
Object detection
Spiking Neural Network(SNN)
Neuron