摘要
矿山作为重要的工业生产基地,对于保障生产安全和提高生产效率具有重要意义。传统的矿山巡检方式主要依赖于人工巡检,具有人力成本高、巡检效率低、存在安全风险等不足,因而,研究自主巡检的矿山巡检机器人路径规划算法对于提高矿山巡检技术水平具有重要意义。提出了一种融合优化遗传算法和变步长蚁群算法的矿山巡检机器人路径规划方法。该方法首先利用遗传算法对机器人路径进行优化,然后将优化后的路径作为蚂蚁搜索的初始路径。在蚂蚁搜索过程中,根据当前路径长度变化情况调整蚂蚁的步长,以适应不同路径长度的搜索。同时,引入了启发式信息和信息素更新策略,增强了蚂蚁搜索的局部和全局搜索能力。试验表明:与单一算法相比,所提方法可以更快地找到较优解,并且具有更好的鲁棒性和稳定性。该方法通过融合变步长蚁群算法和遗传算法的优点,可以快速收敛到全局最优解,同时提高了搜索精度和收敛速度,对于提高矿山巡检机器人路径规划效率,确保矿山安全高效生产具有一定的意义。
As an important industrial production base,mine plays an important role in ensuring production safety and improving production efficiency.Traditional mine inspection mainly relies on manual inspection,which has some shortcomings such as high labor cost,low inspection efficiency and safety risk.Therefore,it is of great significance to study path planning algorithm of autonomous inspection robot for mine inspection to improve the technical level of mine inspection.In this paper,a road stiffness planning method of mine inspection robot is proposed,which combines optimal genetic algorithm and variable step size ant colony algorithm.Firstly,genetic algorithm is used to optimize the robot path,and then the optimized path is adopted as the initial path for ant search.In the process of ant search,the step size of ants is adjusted according to the change of current path length to adapt to the search of different path lengths.At the same time,the heuristic information and pheromone updating strategy are introduced to enhance the local and global search ability of ant search.The study results show that the proposed method can find the optimal solution faster,and has better robustness and stability than a single algorithm.By combining the advantages of variable step size ant colony algorithm and genetic algorithm,this method can quickly converge to the global optimal solution,and at the same time improve the search accuracy and convergence speed,which has certain significance for improving the path rule efficiency of mine inspection robots and ensuring the safe and efficient production of mines.
作者
聂秀珍
焦迎雪
张霞
NIE Xiuzhen;JIAO Yingxue;ZHANG Xia(Department of Mechanical and Electrical Engineering,Shanxi Railway Vocational and Technical College,Taiyuan 030073,China;Department of Automation,Taiyuan University,Taiyuan 030032,China)
出处
《金属矿山》
CAS
北大核心
2023年第7期248-253,共6页
Metal Mine
基金
山西省教育科学“十四五”规划项目(编号:GH-21298)。
关键词
矿山巡检机器人
遗传算法
变步长蚁群算法
路径规划
mine inspection robot
genetic algorithm
variable step size ant colony algorithm
path planning