摘要
准确、快速地识别研究前沿,对于促进科技创新、攻克关键技术、推动学科发展和解决重大问题具有重要意义。以基金项目、学术论文资源为基础,利用LDA主题模型、BERT模型、Word2Vec等方法对科技资源进行主题内容挖掘,同时从新兴度、创新性、交叉性、关注度和中心性5个维度,构建能够表征和识别前沿主题的指标体系,并研发研究前沿识别与多维分析系统。该研究可为更加科学、准确、前瞻地识别科学研究前沿、分析演化路径提供具有应用价值的方法与工具。
Accurately and quickly identifying research frontiers is of great significance for promoting technological innovation,grasping key technologies,promoting disciplinary progress,and solving major problems.Based on fund projects and academic paper resources,this paper uses the LDA topic model,BERT model,Word2Vec,and other methods to mine the subject content of scientific and technological resources.At the same time,from the five dimensions of emerging,innovative,interdisciplinary,attention,and centrality,this paper constructs an index system that can characterize and identify cutting-edge themes,and develops a cutting-edge identification and multidimensional analysis system as well.This study provides valuable methods and tools for identifying scientific research frontiers,analyzing evolutionary paths,and providing more scientific,accurate,and forward-looking insights.
作者
张辉
串丽敏
齐世杰
赵静娟
秦晓婧
ZHANG Hui;CHUAN LiMin;QI ShiJie;ZHAO JingJuan;Qin XiaoJing(Institute of Data Science and Agricultural Economics,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,P.R.China)
出处
《数字图书馆论坛》
2023年第7期9-18,共10页
Digital Library Forum
基金
北京市农林科学院创新能力建设专项“智库型农业情报研究与服务能力提升项目”(编号:KJCX20230208)
“基于智能分析的作物育种关键技术识别与预测方法研究”(编号:QNJJ202308)
“基于多源数据融合的农业热点前沿主题识别与实证研究”(编号:KJCX20200403)资助。
关键词
LDA模型
指标特征
前沿识别
BERT模型
演化路径
LDA Model
Index Characteristic
Frontier Identification
BERT Model
Evolutionary Path