期刊文献+

水蒸汽亚毫秒级凝结实验研究

Experimental Research on Sub-Millisecond Condensation of Water Vapor
下载PDF
导出
摘要 为模拟高超声速风洞中水蒸汽凝结现象,设计了一种基于稀疏波反射原理的凝结实验系统,采用“空间等效时间”思想,在固定位置测量流场随时间的变化,实现了0.14~1.4ms亚毫秒时间尺度的凝结。通过吸收光谱测量方法实现了凝结过程中流场温度、水蒸汽含量的高时间分辨率(100kHz)测量,对小时间尺度凝结现象的影响因素进行了分析。结果表明:不同亚毫秒时间尺度下凝结规律相同;水蒸汽含量或试验段初始压力增加,凝结发生越快,即喷管中的凝结位置越靠前,而发生凝结时的拐点温度越高;初始压力与水蒸汽含量不变时,压力下降速度越快,发生凝结位置越靠前,发生凝结时拐点温度相同。 To simulate the condensation phenomenon of water vapor in a hypersonic wind tunnel,a conden-sation experiment system based on the principle of sparse wave reflection was designed.With the idea of“space equivalent time”,the change of airflow over time was measured at a fixed position,and condensation on sub-mil-lisecond time scales from 0.14ms to 1.4ms was achieved.Also,with the absorption spectrum measurement meth-od,the temperature and water vapor content in the condensation process of the flow field were measured with high time resolution(100kHz),and the influence factors of condensation phenomenon on small time scales were anal-ysed.The results show that:the condensation laws keep the same at different sub-millisecond time scales.The condensation occurs faster when the water vapor content increases or the initial pressure in the test section increases,which means the more forward the condensation position in the nozzle,the higher the inflection point temperature is when condensation occurs.When the initial pressure and water vapor content are constant,the faster the pressure drops,the earlier the condensation occurs,and the temperature at the inflection point remains unchanged when condensation occurs.
作者 王新宝 李健斌 金熠 陈龙奎 黄生洪 翟超 常光 刘中臣 WANG Xin-bao;LI Jian-bin;JIN Yi;CHEN Long-kui;HUANG Sheng-hong;ZHAI Chao;CHANG Guang;LIU Zhong-chen(School of Engineering Science,University of Science and Technology of China,Hefei 230027,China;AVIC Aerodynamics Research Institute,Shenyang110034,China;Aviation Key Laboratory of Science and Technology on High Speed and High Reynolds NumberAerodynamic Force Research,Shenyang 110034,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2023年第8期65-72,共8页 Journal of Propulsion Technology
基金 国家自然科学基金(U21B6003)。
关键词 燃烧加热风洞 水蒸汽 小时间尺度 非平衡凝结 凝结规律 吸收光谱技术 Combustion heating wind tunnel Water vapor Small time scale Non-equilibrium condensation Condensation law Absorption spectroscopy
  • 相关文献

参考文献6

二级参考文献34

  • 1李春辉,王池.通过音速喷嘴气体流量的湿度修正方法研究[J].计量学报,2007,28(z1):160-164. 被引量:8
  • 2黄生洪,徐胜利,李俊杰,陈延辉,夏慧.水蒸汽凝结对超声速风洞蒸汽引射系统的影响[J].推进技术,2005,26(5):471-476. 被引量:7
  • 3曹学文,陈丽,林宗虎,杜永军.用于超声速旋流分离器中的超声速喷管研究[J].天然气工业,2007,27(7):112-114. 被引量:28
  • 4GUY R W, ROGERS R C, PUSTER R L, ROCK K E, DISKIN G S. The NASA Langley scramjet test complex [R]. AIAA-96-3243.
  • 5NASA Langley Research Center. Direct connect super sonic combustion test facility[OL]. http://wte. larc nasa. gov/PDF% 20Brochures/DCSCTF_Brochure. Kar enV1.0. pdf.
  • 6NASA Langley Research Center. Combustion heated Scramjet facility [OL]. http://wte. larc. nasa. gov/PDF%20Brochures/CHSTF_KarenV1.0. pdf.
  • 7HARVIN S F, CABELL K F, GALLIMORE S D, MEKKES G L. Test capability enhancement to the NASA Langley 8-Foot temperature tunnelA]. JANNAF 41^st Combustion/29^th Airbreathing Propulsion/23rd Propulsion Systems Hazards Joint Subcommittee Meeting[C]. San Di ego, Ca. , 2006.
  • 8ERICKSON W D, MALL G H, PRABHU R K. Finiterate water condensation in combustion-heated wind tunnels[R]. NASA 2833, 1988.
  • 9PERRELL E R, ERICKSON W D, CANDLER G V. Numerical simulation of nonequilibrium condensation in a hypersonic wind tunnel[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(2): 277-283.
  • 10杨顺华,乐嘉陵.燃烧加热风洞中有限速率的水蒸气的凝结[A].第十届全国激波与激波管学术讨论会论文集[C].2002.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部