期刊文献+

Multispectral ErBO_(3)@ATO porous composite microspheres with laser and electromagnetic wave compatible absorption 被引量:1

原文传递
导出
摘要 The high-speed advances in electromagnetic(EM)wave and laser detection technology have accelerated the innovation of absorbing materials toward specific multi-band compatibility.It is difficult to achieve dual absorption of EM waves and near-infrared lasers by absorbing materials in a single frequency band;the design of high-performance laser-EM wave multi-band compatible absorbing materials is imminent.Herein,ErBO_(3)@ATO(erbium borate/antimony-doped tin oxide)porous composite microspheres with an average size of 15-20μm are produced solvothermal method and self-assembly,which exhibit excellent laser-EM wave compatible absorption.The porous structure on the surface of ErBO_(3)microspheres provides heterogeneous nucleation sites for ATO particle deposition.The minimum reflectivity of the composite for1.06 and 1.54μm lasers is 9.59%and 4.79%,which is0.57%and 3.78%lower than those of pure ATO particles,respectively.The composites containing 70 wt%porous ErBO_(3)@ATO reveal the minimum reflection loss(RL)value of-31.6 dB,and an effective absorption band width reaches 2.08 GHz at 2.5 mm thickness.The mechanism of near-infrared laser and EM wave compatible absorption is the synergistic effect of the energy level transition of ErBO_(3)and the dielectric loss of ATO,coupled with the large surface area and porous structure of the micro spheres.Therefore,the designed porous ErBO_(3)@ATO composite microspheres can be an attractive choice for lasers and EM wave high-quality compatible absorption.
出处 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2406-2418,共13页 稀有金属(英文版)
基金 financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) "Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province。
  • 相关文献

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部