摘要
针对应急物资配送的多周期性与不确定性,建立不确定条件下多周期车辆路径问题的多目标优化模型,并提出三步式求解方法:基于三角模糊数对不确定性进行消解;基于层次分析法将多目标函数转化为单目标函数;设计改进蚁群算法对优化问题进行启发式求解。采用经典算例验证了该优化方法在解决应急物资配送问题时的时间有效性,算法对比分析证明了改进蚁群算法在收敛速度上的优势,仿真结果分析证明该算法能够有效保证应急物资配送的总体满意度与公平性。
Aiming at the uncertainty and multi-periodicity of emergency supply distribution,a novel period vehicle routing problem(PVRP) multi-objective optimization model is built and a three-step optimization method is proposed.A triangular fuzzy number is used to eliminate the uncertainty.An AHP approach is used to transform the multi-objective function into the single objective function.An improved ACO algorithm is proposed to solve the single objective optimization problem.By classical data set,the time effectiveness of proposed method on emergency supply distribution problem is verified.The computational advantage in convergence speed is proved by the comparative analysis of the proposed algorithm.The simulation results show the overall satisfaction degree and fairness degree of the algorithm on emergency supply distribution can be effectively ensured through applying the improved ACO algorithm.
作者
张立
贺明玲
尹秋霜
李宁
余乐安
Zhang Li;He Minging;Yin Qiushuang;Li Ning;Yu Lean(School of Logistics Engineering,Chongqing University of Finance and Economics,Chongqing 401320,China;College of Economics and Management,Beijing University of Chemical Technology,Beijing 100029,China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2023年第8期1669-1680,共12页
Journal of System Simulation
基金
国家社会科学基金(19BGL244)。
关键词
应急物资配送
多周期车辆路径问题
不确定性
多目标优化
改进蚁群算法
emergency supply distribution
period vehicle routing problem
uncertainty
multi-objective optimization
improved ACO algorithm