期刊文献+

海上风电结构安全监测数据异常识别

Anomaly Identification of Structural Safety Monitoring Data for Offshore Wind Power Projects
下载PDF
导出
摘要 海上风电结构安全监测数据的可靠性和完整性是分析海上建筑物结构安全,评估其运行状态的基础,也是开发预警模型的前提。对原始监测数据进行异常值识别和过滤,提高数据有效性,具有重要的意义。通过比较3种基于距离和密度的算法在监测数据异常识别中的准确率和误差,发现DBSCAN聚类算法在识别海上风电结构安全监测数据的异常值中表现更优。剔除异常值后的监测数据质量较好,既能反映正常观测期间的变化规律,也可为后续开发预警模型提供数据支撑。 The reliability and integrity of the structural safety monitoring data of offshore wind power projects are the basis for the structural safety analysis and operation status assessment of offshore structures,and also the prerequisite for the development of early warning models.It is of great significance to identify and filter the outliers from the original monitoring data to improve the data validity.The accuracy and error of three algorithms based on distance and density in anomaly identification of monitoring data are compared.It is found that DBSCAN clustering algorithm is of the best performance in anomaly identification of structural safety monitoring data for offshore wind power projects.The monitoring data after eliminating the anomaly data is of better quality,which can not only reflect the data variation during the normal observation,but also provide data support for the subsequent development of early warning models.
作者 杨万伦 彭潜 李逸聪 YANG Wanlun;PENG Qian;LI Yicong(Shanghai Investigation,Design&Research Institute Co.,Ltd.,Shanghai 200434,China)
出处 《水电与新能源》 2023年第8期46-49,共4页 Hydropower and New Energy
关键词 海上风电 监测数据 异常识别 聚类算法 offshore wind power monitoring data anomaly identification clustering algorithm
  • 相关文献

参考文献4

二级参考文献44

  • 1苏怀智,吴中如,戴会超.初探大坝安全智能融合监控体系[J].水力发电学报,2005,24(1):122-126. 被引量:51
  • 2孙苗钟.基于MATLAB的振动信号平滑处理方法[J].电子测量技术,2007,30(6):55-57. 被引量:39
  • 3叶川,伍川辉,张嘉怡.计量测试中异常数据剔除方法比较[J].计量与测试技术,2007,34(7):26-27. 被引量:46
  • 4Ma Junshui, Perkins S.Time-series novelty detection using one-class support vector machines[C]//Proceedings of the International Joint Conference on Neural Networks,2003.
  • 5Ma J, Perlcins S.Online novelty detection on temporal sequences[C]//Proceedings of the International Confer- ence on Knowledge Discovery and Data Mining.New York: ACM Press, 2003 : 24-27.
  • 6Shahabi C,Tian X,Zhao W.Tsa-tree: a wavelet-based ap- proach to improve the efficiency of mufti-level surprise and trend queries[C]//Proceedings of the 12th Interna- tional Conference on Scientific and Statistical Database Management.Washington- IEEE Computer Society, 2000: 55-68.
  • 7Keogh E, Lonardi S, Chiu W.Finding surprising pattems in a time series database in linear time and space[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002 : 550-556.
  • 8Moradi M.Prostate cancer probability maps based on ul- trasound RF time series and SVM classifiers: a large scale in-vitro study[C]//Proceedings of MICCAI,2008.
  • 9Moradi M.Computer-aided diagnosis of prostate cancer with emphasis on ultrasoundbased approaches:a review[J]. Ultrasound Med Biol,2007,33(7): 1010-1028.
  • 10Povinelli R J.A new temporal pattern identification method for characterization and prediction of complex time series events[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(2).

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部