期刊文献+

DeepLabv3+与联合损失函数的遥感影像建筑物分割

Building segmentation in remote sensing image based on DeepLabv3+and joint loss function
下载PDF
导出
摘要 快速、自动从遥感影像中提取建筑物可为城市管理、军事侦查、灾后应急评估等提供辅助决策依据。采用基于ResNet50_vd骨干网络的DeepLabv3+深度学习语义分割模型,结合BCE和Lovasz联合损失函数优化算法,实现遥感影像的建筑物提取。在Inria数据集上训练、评估和预测结果显示,采用方法可成功提取遥感影像中的建筑物,准确率最高可达99.02%,mIOU最高可达88.55%。 Rapid and automatic extraction of buildings from remote sensing images can provide auxiliary decision-making basis for urban management,military investigation and post disaster emergency assessment.The DeepLabv3+deep learning semantic segmentation model based on ResNet50_vd backbone network is adopted combined with the back propagation optimization model of BCE and Lovasz joint loss function algorithm to realize the building extraction of remote sensing image.The training,evaluation and prediction results on the Inria dataset show that the method can successfully extract buildings from remote sensing images,with the highest accuracy of 99.02%and mIOU of 88.55%.
作者 苏日亚 杨彦明 安全 于建明 SU Ri-ya;YANG Yan-ming;AN Quan;YU Jian-ming(Seismological Bureau of Inner Mongolia Autonomous Region,Hohhot 010010,China)
出处 《信息技术》 2023年第7期38-42,共5页 Information Technology
基金 中国地震局地震应急青年重点任务(CEA_EDEM-202103)。
关键词 遥感影像 深度学习 语义分割 建筑物提取 联合损失函数 remote sensing image deep learning semantic segmentation building extraction joint loss function
  • 相关文献

参考文献3

二级参考文献28

  • 1STANKOV K. Building detection in very high spatial resolution multispectral images using the hit-or-miss transform [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 86-90.
  • 2SAHIN Y, TEKE M, ERDEM A. Urban area and building detection on high resolution mul- tispectral satellite images using spatial statistics [C]//Signal Processing and Communications Applications Conference 2012: 1-4.
  • 3GRIGILLO D, FRAS M K. Classification based building detection from GeoEye-1 images [C]/ /Proceedings of the Joint Urban Remote Sensing Event, Munich, Germany, 2011: 381-384.
  • 4FRADKIN M, MAITRE H, ROUX M. Building detection from multiple aeriM images in dense urban areas [Jl. Computer Vision and Image Understanding, 2001, 82(3): 181-207.
  • 5MULLER S, ZAUM D W. Robust building detection in aerial images [C]//Proceedings of the ISPRS Workshop CMRT, 2005: 29-30.
  • 6MAYER n. Automatic object extraction from aerial imagery: a survey focusing on buildings [J]. Computer Vision and Image Understanding, 1999, 74(2): 138-149.
  • 7Cui S, VAN Q, REINARTZ P. Complex building description and extraction based on Hough transformation and cycle detection [J]. Remote Sensing Letters, 2012,3(2): 151-159.
  • 8TANATHONG S, RUDAHL K T, COLDIN S E. Object oriented change detection of buildings after the Indian ocean tsunami disaster [C]//5th International Conference on Electrical Engineer- ing/Electronics, Computer, Telecommunications and Information Technology, 2008: 65-68.
  • 9NORONHA S, NEVATIA R. Detection and modeling of buildings from multiple aerial images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(5): 501-518.
  • 10KARANTZALOS K, PARAGIOS N. Recognition-driven two-dimensional competing priors toward automatic and accurate building detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 133-144.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部