摘要
考虑了一类非线性项的弱耦合半线性双波动系统在次临界情况下解的爆破问题:首先,引入若干时变泛函,结合微分不等式方法,得到了该泛函的迭代框架和第一下界;然后,运用迭代技巧和切片方法,证明了该双波动系统柯西问题解的爆破,并推出了其解的生命跨度上界。
Blow-up of solutions to a class of weakly coupled semilinear double-wave system with nonlinear terms in the subcritical case is considered.By introducing some time-dependent functional associated with differential inequality methods,an iteration frame and the first lower bound of solutions are obtained.Then,blow-up of solutions to the Cauchy problem is proved via the iteration technique and slicing methods.Meanwhile,the upper bound of the lifespan for solutions is derived.
作者
欧阳柏平
侯春娟
OUYANG Baiping;HOU Chunjuan(College of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2023年第3期103-109,共7页
Journal of South China Normal University(Natural Science Edition)
基金
广东省基础与应用基础研究基金省市联合基金项目(2021A1515111048)
广东省普通高校重点项目(自然科学)(2019KZDXM042)
广州华商学院校内项目(2020HSDS01)。
关键词
非线性项
弱耦合半线性双波动系统
爆破
nonlinear term
weakly coupled semilinear double-wave system
blow-up