期刊文献+

Small but big leaps towards neuroglycomics:exploring N-glycome in the brain to advance the understanding of brain development and function

下载PDF
导出
摘要 Glycosylation is a process that involves the addition of sugar moieties or glycans to different types of molecules,including proteins,lipids,and nucleic acids.Among these,protein glycosylation is one of the most prevalent forms of post-translational modification,playing a crucial role in biological complexity.With more than ten monosaccharides identified within mammalian brain cells and more than 1×1012 possible combinations,the heterogeneity of glycosylation is extensive(Conroy et al.,2021).The diversity of glycans and the complexity of their structures allow for a wide range of protein functions.N-glycans are one of the most abundant forms of glycans and are involved in various cellular functions.N-glycans can be added to proteins at specific sequons,Asn-X-Ser/Thr,and are classified into three main types in mature glycoproteins:high mannose,complex,and hybrid.High mannose N-glycans consist of 5-9 mannose residues linked to a chitobiose core and undergo processing into complex or hybrid forms in the Golgi apparatus(Varki et al.,2017).Complex N-glycans are more diverse and contain various branched structures such as antennae with fucose,galactose,and sialic acid residues.Hybrid N-glycans contain one or more complex branches in conjunction with an oligomannose branch(Fisher and Ungar,2016).Understanding the specific functions of these different types of N-glycans in protein regulation,folding,and function is an active area of research in the life sciences,including glycobiology.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期489-490,共2页 中国神经再生研究(英文版)
基金 supported by the Institute for Basic Science(IBS-R001-D2-2022-A03).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部