期刊文献+

基于改进灰狼算法的自动导航小车控制策略 被引量:2

Automated Guided Vehicle Control Strategy Based on Improved Gray Wolf Algorithm
下载PDF
导出
摘要 针对灰狼算法(grey wolf optimizer,GWO)易陷入局部最优、后期收敛速度慢等问题,通过引入改进Tent混沌映射反向学习策略和非线性收敛因子,并加入差分进化的变异、交叉、选择操作,提出一种改进的差分灰狼优化算法(improved differential evolution grey wolf optimizer,IDE-GWO)。将改进算法应用于优化自动导航小车(automated guided vehicle,AGV)的比例积分微分(proportion integration differentiation,PID)控制参数,并与其他几种算法进行对比。Simulink仿真实验结果表明:该改进算法优化PID参数的控制效果明显优于其他智能优化算法,能够有效地提升AGV轨迹跟踪性能,使得AGV实际轨迹能较好拟合目标轨迹。 Aiming at the problems that the Grey wolf optimizer(GWO)is easy to fall into the local optimum and the late conver-gence speed is slow,an improved Tent chaotic map reverse learning strategy and nonlinear convergence factor were introduced,and the variation,crossover and selection operation of differential evolution were added.An improved differential evolution grey wolf optimizer(IDE-GWO)was proposed.The improved algorithm was applied to optimize the PID control parameters of the AGV car,and was com-pared with several other algorithms.The simulink simulation experiment results show that the control effect of the improved algorithm to optimize the PID parameters is significantly better than other intelligent optimization algorithms.It can effectively improve the AGV trajectory tracking performance,so that the actual AGV trajectory can better fit the target trajectory.
作者 石雅凯 陈晓静 荣峰 SHI Ya-kai;CHEN Xiao-jing;RONG Feng(College of Electronic and Information,Yangtze University,Jingzhou 434023,China;SJS Petroleum Drilling&Production Equipment Company Limited,Jingzhou 434023,China)
出处 《科学技术与工程》 北大核心 2023年第23期9965-9972,共8页 Science Technology and Engineering
基金 国家自然科学基金(62173049)。
关键词 Tent混沌映射反向学习策略 差分进化灰狼优化 非线性收敛因子 PID控制 tent chaotic map reverse learning strategy DE-GWO nonlinear convergence factor PID control
  • 相关文献

参考文献20

二级参考文献212

共引文献176

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部