期刊文献+

锂离子电池石墨负极锂沉积研究进展

Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries
下载PDF
导出
摘要 全面推进交通运输电气化是实现“碳中和”的根本途径,而以电化学能量储存和转化为核心的电池、电容器等储能技术的开发是其中的重要环节。锂离子电池具有储能密度高、充放电效率高、响应速度快、产业链完整等优点,是最近几年发展最快的电化学储能技术。石墨具有导电性好、成本低、循环寿命长、溶胀率低、安全性高等优点,是锂离子电池负极的首选材料。然而石墨负极金属锂的沉积不仅降低电池循环及快充性能,而且带来电池短路甚至爆炸等安全隐患。本综述概述了石墨负极的电化学动力学过程,总结了依托原位技术对锂沉积机理的解析,讨论了锂沉积过程的影响因素以及解决办法。最后提出了本领域今后发展过程中可能面临的挑战及机遇。 A brief overview of recent developments in the formation,detection,and suppression of lithium dendrites in carbon-based lithium-ion batteries is presented.The electrochemical processes that result in the formation of lithium dendrites on the anode surface are reviewed,and various detection methods,including the essential operando technique for understanding the complex mechanism,are then introduced.Methods for suppressing lithium dendrite formation are discussed and prospects for future research and development are presented.
作者 许钰洁 王斌 万弋 孙义 王万里 孙康 杨黎军 胡涵 吴明铂 XU Yu-jie;WANG Bin;WAN Yi;SUN Yi;WANG Wan-li;SUN Kang;YANG Li-jun;HU Han;WU Ming-bo(College of Chemistry and Chemical Engineering,College of New Energy State Key Laboratory of Heavy Oil Processing,China University of Petroleum(East China),Qingdao 266580,China;Institute of Chemical Industry of Forest Products,Chinese Academy of Forestry,Nanjing 210042,China;Qingdao Guanbaolin Activated Carbon Co.,Ltd.,Qingdao 266313,China)
出处 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2023年第4期678-697,共20页 New Carbon Materials
基金 中国石油大学(华东)启动基金(27RA2204027) 山东省自然科学基金(ZR2020ZD08)、山东省泰山学者项目(编号:TSQN20221117) 山东省博士后创新人才支持计划(SDBX2022034) 青岛市博士后创新项目(QDBSH20220202003).
关键词 石墨负极 锂沉积 锂离子电池 机理 原位检测 Graphite anode Lithium deposition Lithium-ion batteries Mechanism In situ detection
  • 相关文献

参考文献4

二级参考文献42

  • 1He X, Ling P, Yu M, et al. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors[J]. Electrochimica Acta, 2013, 105:635-641.
  • 2Conway B E. Electrochemical Supercapacitors[M]. New York:Kluwer-Plenum Pub. Co., 1999.
  • 3Zhai D, Li B, Du H, et al. The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors[J]. Carbon, 2012, 50(14):5034-5043.
  • 4Wu M, Ai P, Tan M, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chemical Engineering Journal, 2014, 245:166-172.
  • 5He X, Ling P, Qiu J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240(0):109-113.
  • 6Tanaka S, Fujimoto H, Denayer J F M, et al. Surface modification of soft-templated ordered mesoporous carbon for electrochemical supercapacitors[J]. Microporous and Mesoporous Materials, 2015, 217:141-149.
  • 7Zhang Q, Li L, Wang Y L, et al. Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes[J]. Electrochimica Acta, 2015, 176:542-547.
  • 8Kim K S, Park S J. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method[J]. Electrochimica Acta, 2012, 65:50-56.
  • 9Zheng C, Qi L, Yoshio M, et al. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors[J]. Journal of Power Sources, 2010, 195(13):4406-4409.
  • 10Sui W, Zheng J, Yang Z, et al. A simple method of preparing ordered and three-dimensionally interconnected macroporous carbon with mesoporosity by using silica template[J]. Materials Letters, 2011, 65(15):2534-2536.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部