期刊文献+

基于热力耦合的硬态车削过程有限元模拟及分析

Finite element simulation and analysis of hard turning process based on thermal-mechanical coupling
下载PDF
导出
摘要 为了探究热力耦合作用下不同切削参数对加工过程的影响,为优化工艺参数提供数据支撑,利用Deform有限元分析软件构建了热力耦合作用下的正交切削有限元模型,模拟GCr15钢硬态车削加工过程,对车削加工中的切削力、温度场和应力场分别进行动态分析。结果表明:硬态切削加工过程中主切削力最大;工件表面的等效应力和应变随切削深度和切削速度的增加而增加;工件表面温度是一个快速升温和快速冷却的过程,并且工件表面温度最高,沿深度方向逐渐减小。 Using Deform finite element analysis software,the orthogonal cutting finite element model under thermal mechanical coupling was constructed,the hard turning process of GCr15 steel was simulated,the cutting force,temperature field and stress field in the turning process were dynamically analyzed,and the influence of different cutting parameters on the cutting process under thermal mechanical coupling was explored,which provided guidance for the optimization of process parameters.The results showed that the main cutting force was the largest in the process of hard cutting.The equivalent stress and strain of workpiece surface increased with the increase of cutting depth and cutting speed.The temperature of workpiece surface was a process of rapid heating and cooling,and the temperature of workpiece surface was the highest and gradually decreased along the depth direction.
作者 迟玉伦 范志辉 王国强 武子轩 CHI Yulun;FAN Zhihui;WANG Guoqiang;WU Zixuan(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《农业装备与车辆工程》 2023年第8期67-72,共6页 Agricultural Equipment & Vehicle Engineering
关键词 热力耦合 硬态切削 切削力 切削温度 有限元分析 thermal mechanical coupling hard cutting cutting force cutting temperature finite element analysis
  • 相关文献

参考文献3

二级参考文献19

  • 1张雪萍,赵国伟,蒋辉,C.R.Richard.精密干切削淬硬零件表面完整性试验分析[J].上海交通大学学报,2006,40(6):922-926. 被引量:5
  • 2郭丽君.硬态切削刀具的性能及选用[J].机械设计与制造,2007(7):105-106. 被引量:5
  • 3史美堂.金属材料及热处理[M].上海:上海科学技术出版社,2008.
  • 4王先逵.机械制造工艺学[M].北京:机械工艺出版社,2010.
  • 5邓文英,郭晓鹏.金属工艺学[M].北京:高等教育出版社,2010.
  • 6ABRAO A M,ASPINWALL D K.The Surface Integrity ofTurned and Ground Hardened Bearing Steel [J]. Wear,1996,196(112):279-284.
  • 7Wen Q, Guo Y B, Todd B A. An adaptive FEA method to predict surface quality in hard machining. Materials Processing Technology, 2006, 173(1):21-28.
  • 8Umbrello D, Hua J, Shivpuri R. Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Materials Science and Engineering A, 2004, 374(1/2):90-100.
  • 9Thiele J D, Melkote N. Effect of tool edge geometry on workpiece subsurface deformation and through-thickness residual stresses for hard turning of AISI 52100 steel. Journal of Manufacturing Processes, 2000, 2(4):270-276.
  • 10Thiele J D, Melkote S N, Peascoe R A, et al. Effect of cutting- edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. Journal of Manufacturing Science and Engineering, 2000, 122(4):642-649.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部