摘要
针对故障诊断中存在的由于特征提取单一或特征提取缺失导致的诊断准确率较低这一问题,提出一种基于多特征的Res-BiLSTM滚动轴承故障诊断方法。首先通过时域分析法和残差网络对时域特征值和空间特征进行提取并进行特征融合,其次将融合的特征值输入双向长短期记忆网络进行时序特征提取,最后利用Softmax进行分类。实验结果表明,该故障诊断方法增强了故障诊断网络的特征提取能力,进而提高了诊断准确率。
To address the problem of low diagnostic accuracy due to single feature extraction and missing feature extraction in fault diagnosis,Res-BiLSTM rolling bearing fault diagnosis method based on multiple features is proposed.Firstly,the time domain feature values and spatial features are extracted and feature fusion are performed by time domain analysis and residual network,then the fused feature values are input to the bidirectional long and short-term memory network for temporal feature extraction,and finally Softmax is used for classification.The experimental results show that this fault diagnosis method enhances the feature extraction ability of the fault diagnosis network,thus improving the diagnosis accuracy.
作者
张姝婷
彭成
李长云
ZHANG Shuting;PENG Cheng;LI Changyun(College of Computer Science,Hunan University of Technology,Zhuzhou 412007,China)
出处
《现代信息科技》
2023年第15期146-150,共5页
Modern Information Technology
基金
基于疫情防控的体温测量系统的研究与实现(22C0318)。
关键词
故障诊断
滚动轴承
残差网络
双向长短期记忆网络
fault diagnosis
rolling bearing
residual network
bidirectional long and short-term memory network