摘要
从数学角度对变分自编码器目标函数下界和网络结构进行了研究,指出变分自编码器所生成的样本质量低的两个原因:1)由于识别模型qφ(z|x)表达能力的限制使得后验分布pθ(z|x)偏离目标分布,导致最大化证据下限时没有能够保证最大化对数似然;2)变分自编码器中条件分布pθ(x|z)对应的网络结构把生成数据x和隐变量z之间的概率依赖关系近似为函数依赖关系,即把一个显示概率生成模型用一个隐式概率生成模型来近似实现。该结论为进一步研究和改进变分自编码器以及设计其他生成模型提供了理论支撑。
The lower bound of the objective function and the network structure of the variation auto-encoder are studied mathematically,and two reasons for the low quality data generated by the variation auto-encoder are analyzed as follows:1)Due to the limitation of the expression ability of the recognition model,the posterior distribution deviates from the target distribution,which results in the failure to ensure the maximum likelihood when maximizing the evidence lower bound;2)In the variation auto-encoder,the network structure of the conditional distribution approximates the probability dependency between generation data and implicit variable to a functional dependency,that is,an explicit probability generation model is approximated by an implicit probability model.These conclusions provide theoretical basis for further research and improvement of the variation auto-encoders and design of other generation models.
作者
张建光
郭双乐
曹吉朋
左瑞龙
齐长志
ZHANG Jianguang;GUO Shuangle;CAO Jipeng;ZUO Ruilong;QI Changzhi(College of Mathematics and Computer Science,Hengshui University,Hengshui,Hebei 053000,China;School of Information Engineering,Binzhou University,Binzhou,Shandong 256600,China;Hebei Information Technology Innovation Center for Basic Education,Hebei Xinkao Technology Co.,Ltd,Hengshui,Hebei 053000,China)
出处
《衡水学院学报》
2023年第4期20-24,共5页
Journal of Hengshui University
基金
河北省自然科学基金(F2020111001)
国家自然科学基金(61702165)
教育部人文社科青年基金(18YJCZH129)
河北省自然科学基金(F2016111005)
衡水学院高层次人才科研启动基金项目(2021GC17)
衡水学院校内非实体性研究机构项目(2021yj18)。
关键词
变分自编码器
生成模型
重参数化
variation auto-encoder
generative model
reparametrization