期刊文献+

平扫CT深度学习模型预测经保守治疗后排出输尿管结石 被引量:3

Deep learning models based on plain scan CT for predicting discharge of ureteral calculus after conservative management
下载PDF
导出
摘要 目的观察基于平扫CT建立的神经网络深度学习(DL)模型预测保守促排石治疗后排出输尿管结石的价值。方法纳入915例接受保守促排石治疗的输尿管结石患者,随机分为训练集(n=700)、验证集(n=100)及测试集(n=115)。基于平扫CT标记结石三维形状,分别针对训练集和验证集获取三维卷积神经网络(3D-CNN)、二维卷积神经网络(2D-CNN)及全连接神经网络(FCN)最佳参数并建立模型,以测试集检测模型预测能力;绘制受试者工作特征曲线,比较各模型及结石最大径预测测试集经保守治疗后可否排出输尿管结石的效能。结果915例中,229例经保守治疗后排出输尿管结石。3D-CNN模型预测测试集排出输尿管结石的效能最佳,其曲线下面积(AUC)为0.956,高于2D-CNN模型(0.865)、FCN模型(0.813)及结石直径(0.818)(P均<0.01);2D-CNN模型预测AUC高于FCN模型及结石直径(P均<0.05)。结论利用DL模型、尤其3D-CNN能准确预测输尿管结石可否于保守治疗后排出。 Objective To observe the value of deep learning(DL)models established based on plain CT for predicting discharge of ureteral calculus after conservative management.Methods Totally 915 patients with single ureteral calculus who underwent medical expulsive therapy were enrolled.The patients were randomly divided into training set(n=700),validation set(n=100)or test set(n=115).The three-dimensional shape of calculus was marked on plain CT images,and the optimal parameter models of three-dimensional convolutional neural network(3D-CNN),two-dimensional convolutional neural network(2D-CNN)and fully-connected network(FCN)were obtained based on data of training set and verification set.Then receiver operating characteristic curves were drawn,and the efficacies of the models and the maximum diameter of calculus for predicting whether it could be discharged after conservative management were compared.Results Among 915 cases,ureteral calculus was discharged in 229 cases after conservative management.3D-CNN model was the best for predicting whether ureteral calculus could be discharged after conservative management,with the area under the curve(AUC)of 0.956,higher than that of 2D-CNN model(0.865),FCN model(0.813)and calculus diameter(0.818)(all P<0.01).Meanwhile,the AUC of 2D-CNN model was higher than that of FCN model and calculus diameter(both P<0.05).Conclusion DL models,especially 3D-CNN,could be used to accurately predict whether ureteral calculus could be discharged after conservative management.
作者 李金阳 张羽萌 张超 LI Jinyang;ZHANG Yumeng;ZHANG Chao(Department of Urology,Second Hospital of Shandong University,Jinan 250033,China;Department of Medical Imaging,Second Hospital of Shandong University,Jinan 250033,China)
出处 《中国医学影像技术》 CSCD 北大核心 2023年第8期1225-1228,共4页 Chinese Journal of Medical Imaging Technology
关键词 输尿管结石 神经网络 计算机 深度学习 体层摄影术 X线计算机 ureteral calculi neural networks,computer deep learning tomography,X-ray computed
  • 相关文献

参考文献7

二级参考文献43

  • 1叶章群.泌尿系结石研究现况与展望[J].中华实验外科杂志,2005,22(3):261-262. 被引量:268
  • 2吴君,杨太珠,林江莉,罗红,李德玉,汪天富,郑昌琼.基于人工神经网络的足月胎儿体重预测方法[J].生物医学工程学杂志,2005,22(5):922-925. 被引量:8
  • 3陈孝平,叶章群.外科学:下册.北京:人民卫生出版社,2005:856-859.
  • 4Okada A, Nomura S, Higashibata Y, et al. Successful forma- tion of calcium oxalate crystal deposition in mouse kidney by in- traabdominal glyoxylate injection. Urol Res, 2007, 35 (2) : 89- 99.
  • 5Porpiglia F, Ghignone G, Fiori C, et al. Nifedipine versus tam- sulosinfor the management of lower ureteral stones. J Urol, 2004,172(2) :568-571.
  • 6JohnsonTR, Krauss B, Sedlmair M, et al. Dual energy CT characterization of urinary calculi: Initial in vitro and clinical ex- perience. Eur Radiol, 2007,17(6):1510-1517.
  • 7Hidas G, Eliahou R, Duvdevani M, et al. Determination of re- nal stone composition with dual-energy CT: In vivo analysis and comparison with X-ray diffraction. Radiology, 2010, 257 (2) : 394-401.
  • 8Stolzmann P, Scheffel H, Rentsch K, et al. Dual-energy com- puted tomography for the differentiation of uric acid stones: Ex vivo performance evaluation. Urol Res, 2008,36(3-4) : 133-138.
  • 9Primak AN, Fletcher JG, Vrtiska TJ, el al. Noninvasive differ- entiation of uric acid versus non-uric acid kidney stones using du- al-energy CT. Acad Radiol, 2007,14(12):1441-1447.
  • 10Deveci S, Coskun M, Tekin MI, et al. Spiral computed tomo- graphy: Role in determination of chemical compositions of pure and mixed urinary stones-an in vitro study. Urology, 2004,64 (2) :237-240.

共引文献72

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部