期刊文献+

多智能体强化学习在直升机机场调度中的应用 被引量:3

Multi-Agent Reinforcement Learning in Helicopter Airport Dispatching
下载PDF
导出
摘要 快速高效的直升机机场调度是现代直升机机场调度系统面临的主要挑战。设计了一个直升机机场调度试验平台,使用二维网格环境,供多种算法进行快速试验。机场调度试验平台根据机场实际地形进行地图编辑,提供了传统的集中式规划算法和基于多智能体强化学习算法来进行快速高效的模拟调度实验。实验表明,基于多智能体强化学习方法的可扩展性和实时规划效果较好。试验平台为进一步研究机场调度提供了良好的起点,对未来多智能体路径规划问题应用于实际场景将会产生有益影响。 Fast and efficient helicopter airport dispatching is the main challenge faced by modern helicopter airport dispatching system.Helicopter airport dispatching can be regarded as a classical multi-agent path finding problem.A helicopter airport dispatching test platform is designed,which uses a two-dimensional grid environment for rapid test of various algorithms.The airport dispatching test platform edits the map according to the actual terrain of the airport,and provides the traditional centralized planning algorithm and the algorithm based on multi-agent reinforcement learning to carry out fast and efficient simulation dispatching experiments.In order to explore the potential of multi-agent reinforcement learning in airport scheduling,a large number of experiments are carried out,and the applicability and characteristics of different types of algorithms are compared and analyzed.The experimental results show that the reinforcement learning method based on multi-agent has good scalability and real-time planning effect.The test platform provides a good starting point for further research on airport scheduling,and will have a beneficial impact on the application of multi-agent path finding in practical scenarios in the future.
作者 刘志飞 董强 赖俊 陈希亮 LIU Zhifei;DONG Qiang;LAI Jun;CHEN Xiliang(College of Command and Control Engineering,Army Engineering University,Nanjing 210007,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第16期285-294,共10页 Computer Engineering and Applications
基金 国家自然科学基金(61806221)。
关键词 机场调度 试验平台 多智能体路径规划 强化学习 airport dispatching test platform multi-agent path finding reinforcement learning
  • 相关文献

参考文献3

二级参考文献29

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2PARKER L E. Multiple mobile robot systems [ M]//Springer Hand- book of Robotics. Berlin: Springer, 2005:921-941.
  • 3CHARKROBORTY J, MUKHOPADHYAY S. A robust cooperative multi-robot path-planning in noisy environment [ C]// Proceedings of the 2010 IEEE International Conference on Industrial and Infor- mation Systems. Piscataway: IEEE, 2010:626-631.
  • 4JARADAT M, GARIBEH M H, FEILAT E A. Dynamic motion plan- ning for autonomous mobile robot using fuzzy potential field [ C]// Proceedings of the 6tb International Symposium on Meehatronies and Its Applications. Piseataway: IEEE, 2009:24-26.
  • 5GHATEE M, MOHADES A. Motion planning in order to optimize the length and clearance applying a Hopfield neural network [ J]. Expert Systems with Applications, 2009, 36(3): 4688 -4695.
  • 6BARTO A G, MAHADEVEN S. Recent advance in hierarchical reinforcement learning [ J]. Discrete Event Dynamic Systems, 2003, 13(4): 341 -379.
  • 7SABATFIN L, SECCHI C, FANTUZZI C. Arbitrarily shaped for- mations of mobile robots: artificial potential fields and coordinate transformation [ J]. Autonomous Robots, 2011, 30 (4) : 385 - 397.
  • 8KHATIB O. Real-time obstacle avoidance for manipulators and mo- bile robots [ C]//Proceedings of the 1985 IEEE International Con- ference on Robotics and Automation. Piseataway: IEEE, 1985, 2: 500 - 505.
  • 9LIANG T. A speedup convergent method for multi-Agent reinforce- ment learning [ C]// Proceedings of the 2009 International Confer- ence on Information Engineering and Computer Science. Piscat- away: IEEE, 2009:1-4.
  • 10SUTTON R S, PRECUP D, SINGH S P. Between MDPs and semi- MDPs: a fi'amework for temporal abstraction in reinforcement learn- ing [ J]. Artificial Intelligence, 1999, 112(1/2) : 181 - 211.

共引文献45

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部