期刊文献+

高观点下探寻多边形的内角和与外角和

下载PDF
导出
摘要 三角形的内角和是一个重要的几何量,在欧几里得几何学中,三角形的内角和为180度.在证明这一定理的时候,中学教科书[1]采用的方法是这样的:首先过三角形的某一个顶点作与对边平行的辅助线,再利用内错角相等得到三角形的内角和为180度.而内错角相等需要利用欧几里得几何的两条公理:同位角相等和对顶角相等.由此可见,为了证明三角形的内角和为180度,需要两条公理.中学课本证明完三角形的内角和为180度以后,再利用内角和外角互补的关系,得到外角和为360度.
作者 叶莹
出处 《中学数学研究》 2023年第9期44-46,共3页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部