期刊文献+

高温超导体临界电流密度非均匀分布研究进展

Research Progress on Non-uniform Distribution of Critical Current Density in High Temperature Superconductors
下载PDF
导出
摘要 高温超导体因其优越性能和广泛应用前景受到了研究人员和业界人士的高度重视。在实际应用领域中,交流损耗关系着超导材料和系统的安全性、稳定性和经济性,所以准确计算并寻找降低交流损耗的方法对其产品商业化有着举足轻重的作用。近年来,众多研究人员基于不同的技术和方法对临界电流密度非均匀分布形式和对交流损耗的影响进行了研究。本文综述了高温超导体临界电流密度非均匀分布的理论模型和交流损耗数值计算方法,讨论了不同分布形式对交流损耗的影响。同时,本文还提供了利用磁场、交流损耗等宏观实验数据反演临界电流密度非均匀分布形式的方法。这些方法能为实际工况应用中高温超导体的设计和生产提供理论支撑。 High-temperature superconductors have received a great deal of attention from researchers and industry alike for their superior performance and potential for widespread application.In practical applications,AC losses are directly related to the safety,stability and economy of the material and the system,so accurate calculations and the search for ways to reduce AC losses are crucial to the commercialization of their products.In recent years,many researchers have investigated the form of non-uniform distribution of critical current density and the effect on AC losses based on different techniques and methods.This paper reviews the theoretical model of the non-uniform distribution of critical current density and the numerical calculation of AC losses for high temperature superconductors,and discusses the effect of the form of distribution on AC losses.The paper also provides a method for inversion of the non-uniform distribution form of critical current density using macroscopic experimental data such as magnetic field and AC losses.These methods can provide theoretical support for the design and production of high temperature superconductors in practical applications.
作者 王淼 Wang Miao(School of Physics and Electronics Engineering,Shanxi University,Shanxi,030006)
出处 《当代化工研究》 CAS 2023年第17期5-7,共3页 Modern Chemical Research
关键词 高温超导体 临界电流密度 非均匀分布 交流损耗 high-temperature superconductor critical current density non-uniform distribution AC losses
  • 相关文献

参考文献2

二级参考文献19

  • 1马衍伟.超导材料研究及应用进展[J].科学新闻,2007(5):20-21. 被引量:3
  • 2W.T. Norris ,J. Phys. D. , 3(1970), 489.
  • 3D.-X. Chen and R. B. Goldfarb, J. Appl. Phys. , 66 (1989),2489.
  • 4D.-X. Chen, A. Sanchez and Z. Munoz, J. Appl. Phys. ,67 (1990),3430.
  • 5Y. Yang, T. Hughes, C. Beduz, D. M. Spiller, R. G. Seurlock and W. T. Norris, Physica C, 256(1996), 378.
  • 6C. M. Friend, S. A. Awan, L. L. Le, S. Sali and T. P. Beales , Physica C, 279(1997), 145.
  • 7K. Kajikawa, Y. Mawatari, T. Hayashi and K. Funaki , Supercond. Sci. Technol. , 17(2004), 555.
  • 8F. Gomory, E. Seiler, J. Souc, P. Kovac et al. , Supercond. Sci. Technol. , 17(2004), S150.
  • 9D.-X. Chen, A. Sanchez and E. Pardo, Supercond. Sci. Technol. ,17(2004), 256.
  • 10O. Tsukamoto, Supercond. Sci. Technol. , 18(2005),576.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部