期刊文献+

轻小型、紧凑型机载光电吊舱散热技术

Thermal Management Technology of Light,Small,and Compact Airborne Photo-Electric Pod
下载PDF
导出
摘要 为满足机载光电吊舱轻小型、紧凑型要求,解决光电吊舱散热问题,采用了热传导和风机内循环对流结合的散热方式,用金属结构件将发热元器件与壳体接触建立热传导通道,用风机内循环强化内部对流建立低热阻的对流换热通道,通过ICEPAK热仿真软件对该散热方式建模仿真计算表明:静止条件下吊舱核心处理芯片DSP、FPGA、SoC温升分别为:29.1℃、29.2℃、33.8℃,相比无风机时别降低:5.2℃、3.5℃、4.4℃;飞行条件下温升分别为:11.9℃、9.1℃、15.5℃;静止条件下,在风机内循环作用下,舱内最高环境温度较无风机内循环时降低约5.5℃。通过与同等条件下高温试验数据比较,仿真温度与测试温度相差3.1℃。该散热方式可有效降低舱内环境和器件的温升,满足吊舱使用要求,结构简单占用空间小,适用于轻小型、紧凑型机载光电吊舱。 To meet the development trend of light,small,and compact airborne photoelectric pods and solve the heat dissipation problem of photoelectric pods,a combination of cooling and fan circulation convection heat dissipation was used.The contact heat components with the cabin using a metal structure were employed to establish a heat conduction channel.The internal air was circulated by a fan to strengthen the internal convection and establish a low-thermal-resistance convection heat-transfer channel.Modeling simulation was performed by ICEPAK thermal simulation software,and a high-temperature working test was also conducted.The results show that the maximum temperature rise of the key processors DSP,FPGA,SoC is respectively 29.1℃,29.2℃,33.8℃under static conditions and 5.2℃,3.5℃,4.4℃lower than the case without fans.And the maximum temperature rise is respectively 11.9℃,9.1℃,15.5℃under flight conditions.At the same time,under the action of internal air circulation by the fan,the maximum ambient temperature in the cabin was reduced by approximately 5.5℃.The maximum temperature deviation between test and simulation at the same conditions is 3.1℃.The thermal management method can effectively reduce the temperature increase in the internal environment and devices inside the cabin,satisfy the requirements of pod use with a simple structure,and occupy a small space.Thus,it is suitable for light,small,and compact airborne photo-electric pods.
作者 何宴 郭宇 曾珠 刘志辉 付强 HE Yan;GUO Yu;ZENG Zhu;LIU Zhihui;FU Qiang(Sichuan Jiuzhou Electric Group Co.,Ltd.,Mianyang 621000,China)
出处 《红外技术》 CSCD 北大核心 2023年第8期837-844,共8页 Infrared Technology
基金 四川省自然科学基金(2022NSFSC0884)。
关键词 光电探测系统 光电吊舱 散热技术 热仿真与试验 photoelectric detection airborne photo-electric pod thermal management technology thermal simulation and test
  • 相关文献

参考文献8

二级参考文献39

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部