期刊文献+

基于因果推断和多头自注意力机制的学生成绩预测 被引量:2

Students′performance prediction based on causal inference and multi⁃head self⁃attention mechanism
下载PDF
导出
摘要 学生成绩预测旨在为学校管理者提供决策支持,帮助教师改进教学手段,对学生进行学业指导,最终提高学生成绩。传统的学生成绩预测方法大多利用相关性分析选取重要因素,忽视多变量之间的间接联系和联系的方向性,而且在进行预测时没有区分输入特征的重要程度,因此提出一种基于因果推断和多头自注意力机制的学生成绩预测方法。该方法不仅使用因果推断选取与标签具有方向性联系的直接特征和间接特征,而且用多头自注意力机制区分不同特征对期末成绩的影响程度。在公开数据集上进行大量的实验,结果显示所提出方法的预测准确率高达93.06%,高于其他传统成绩预测方法。 The purpose of students′performance prediction is to provide decision support for school administrators,help teachers improve teaching methods,provide academic guidance to students,so as to ultimately improve the students′performance.In the traditional students′performance prediction methods,correlation analysis is mostly used to select important factors,and the indirect connection and directionality of the connection between multiple variables are ignored.Moreover,the degree of importance of input features is not distinguished when making predictions.Therefore,a students′performance prediction method based on causal inference and multi⁃head self⁃attention mechanism is proposed.In this method,causal inference is used to select the direct features and indirect features that have directional connection with labels,the multi⁃head self⁃attention mechanism is used to distinguish the influence degree of different features on the final results.A large number of experiments were carried out on an open data set.The experimental results show that the prediction accuracy rate of the proposed method can reach 93.06%,which is higher than the other traditional performance prediction methods.
作者 张文奇 王海瑞 朱贵富 ZHANG Wenqi;WANG Hairui;ZHU Guifu(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650000,China;Information Construction Management Center of Kunming University of Science and Technology,Kunming 650000,China)
出处 《现代电子技术》 2023年第17期111-116,共6页 Modern Electronics Technique
基金 国家自然科学基金项目(61863016)。
关键词 学生成绩预测 教育数据挖掘 因果推断 多头自注意力机制 TRANSFORMER 相关性分析 students′performance prediction educational data mining causal inference multi⁃head self⁃attention mechanism transformer correlation analysis
  • 相关文献

参考文献9

二级参考文献46

  • 1乔珠峰,田凤占,黄厚宽,陈景年.缺失数据处理方法的比较研究[J].计算机研究与发展,2006,43(z1):171-175. 被引量:13
  • 2黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 3PearlJ. Causality: models, reasoning and inference[M]. Cam?bridge-The MIT Press,2009.
  • 4Spirtes, Glymour C, Scheines R. Causation, prediction. and search[M]. The MIT Press,200(}.
  • 5Tsamardinos I,Brown L E,Alferis C F. The max-min hill-climbing bayesian network structure learning algorithm[J]. Machine Learn?ing,2006,65(1 ) :31-78.
  • 6Chickering D M. Optimal structure identification with greedy search[J].Journal of Machine Learning Research,2002,3 :507-554.
  • 7Shimizu S, Hoyer PO, Hyvarinen A, et al. A linear non-gaussian a?cyclic model for causal discovery[J]. TheJournal of Machine Learning Research ,2006 ,7 :2003 -2030.
  • 8Hoyer P O,Janzing D,MooiJ J M,et al. Nonlinear causal discovery with additive noise models[C]. Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2009: 689- 696.
  • 9PetersJ ,Janzing D, Scholkopf B. Causal inference on discrete data using additive noise models[J]. IEEE Transactions on Pattern A?naysis and Machine Intelligence,2011 ,33( 12) :2436-2450.
  • 10Vargas P , Moioli R,de Castro L N ,et al. Artificial homeostatic sys?tern: a novel approach[C] . Proc. of the 8th European Conference, 2005: 754-764.

共引文献158

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部