摘要
针对现有的YOLO疲劳驾驶检测算法参数多、计算量大、实车推广困难等问题,提出一种改进的轻量级GBC-YOLOv5疲劳驾驶检测方法。首先,利用Ghost卷积模块实现特征提取;其次,采用Ghost Bottleneck模块来降低计算瓶颈,减少模型参数量和不必要的卷积计算;然后,引入CA注意力机制来增强网络的特征提取能力;最后,通过BiFPN结构来实现多尺度特征的高效融合。对YawDD疲劳驾驶数据集的检测结果表明,GBC-YOLOv5模型的平均精度均值达到了98.6%,实现了模型轻量化和实时性的平衡。
An improved lightweight GBC YOLOv5 fatigue driving detection method is proposed to address the problems of existing YOLO fatigue driving detection algorithms with multiple parameters,high computational complexity and difficulty in promoting actual vehicles.Firstly,feature extraction is achieved by using the Ghost convolution module.Secondly,the Ghost Bottleneck module is adopted to breakthrough computational bottlenecks,reducing model parameters and unnecessary convolution calculations.Then,CA attention mechanism is integrated to enhance the ability of network′s feature extraction.Finally,the BiFPN structure is introduced to achieve efficient multi-scale feature integration.The detection results of the YawDD fatigue driving dataset show that the average accuracy of the GBC YOLOv5 model reaches 98.6%,achieving a balance between model lightweight and real-time performance.
作者
冯世霖
李作进
史蓝洋
陈智能
曹亚男
贺学乐
FENG Shilin;LI Zuojin;SHI Lanyang;CHEN Zhineng;CAO Yanan;HE Xuele(School of Electrical Engineering,Chongqing University of Science and Technology,Chongqing 401331,China)
出处
《重庆科技学院学报(自然科学版)》
CAS
2023年第4期65-73,共9页
Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金
国家自然科学基金面上项目“模糊循环神经网络和驾驶人疲劳特征空间机理研究”(61873043)
重庆市自然科学基金项目“基于操作行为的驾驶人疲劳特征学习方法研究”(CSTC2020JCYJ-MSXMX0927),“面向多模态异构大数据的特征自主学习方法研究”(CSTC2021YCJH-BGZXM0071)。