期刊文献+

基于DOM树和混合文本密度的网页信息提取方法研究

Research on Web Page Information Extraction Method Based on DOM Tree and Mixed Text Density
下载PDF
导出
摘要 在网页信息提取领域,文档对象模型(Document Object Model,DOM)树和混合文本密度是两个重要的概念。文章提出一种基于DOM树和混合文本密度的网页信息提取方法。首先,利用DOM树结构分析网页的标签层次结构,确定每个标签的重要性;其次,根据混合文本密度计算每个标签中包含有用信息的概率并且提取重要信息;最后,进行实验分析。实验结果表明,该方法能够有效提取网页中的有用信息。 In the field of web page information extraction,Document Object Model(DOM)tree and mixed text density are two important concepts.The article proposes a web page information extraction method based on DOM tree and mixed text density.Firstly,use the DOM tree structure to analyze the hierarchical structure of web pages'tags and determine the importance of each tag;Secondly,calculate the probability of containing useful information in each label based on the mixed text density and extract important information;Finally,conduct experimental analysis.The experimental results show that this method can effectively extract useful information from web pages.
作者 魏建兵 WEI Jianbing(Gansu Forestry Polytechnic,Tianshui Gansu 741020,China)
出处 《信息与电脑》 2023年第10期52-54,共3页 Information & Computer
基金 甘肃省高校大学生就业创业能力提升工程项目“电子信息类专业‘赛创、思创、专创、产教’四元融合多元对接就业平台构建与实践”(项目编号:GS-2023-56)。
关键词 DOM树 混合文本密度 信息提取 DOM tree mixed text density information extraction
  • 相关文献

参考文献1

二级参考文献37

  • 1Gibson D,Punera K,Tomkins A.The volume and evolution of web page templates.In:Proc.of the Special Interest Tracks and Posters of the 14th Int'l Conf.on World Wide Web(WWW 2005).New York:ACM Press,2005.830-839.[doi:10.1145/1062745.1062763].
  • 2Reis DC,Golgher PB,Silva AS,Laender AHF.Automatic Web news extraction using tree edit distance.In:Proc.of the 13th Int'l Conf.on World Wide Web(WWW 2004).New York:ACM Press,2004.502-511.[doi:10.1145/988672.988740].
  • 3Parapar J,Barreiro á.An effective and efficient Web news extraction technique for an operational NewsIR system.In:Proc.of the 12th Conf.of the Spanish Association for Artificial Intelligence,Vol.2.2007.319-328.
  • 4Luxburg U,Belkin M,Bousquet O.Consistency of spectral clustering.The Annals of Statistics,2008,36(2):555-586.[doi:10.1214/009053607000000640].
  • 5Fiedler M.Algebraic connectivity of graphs.Czechoslovak Mathematical Journal,1973,23(2):298-305.
  • 6Wu Z,Leahy R.An optimal graph theoretic approach to data clustering:Theory and its application to image segmentation.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(11):1101-1113.[doi:10.1109/34.244673].
  • 7Sarkar S,Soundararajan P.Supervised learning of large perceptual organization:Graph spectral partitioning and learning automata.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(5):504-525.[doi:10.1109/34.857006].
  • 8Shi J,Malik J.Normalized cuts and image segmentation.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.[doi:10.1109/34.868688].
  • 9Wang XT.The research of multi-source information fusion method[MS.Thesis].Harbin:Harbin Engineering University,2012(in Chinese with English abstract).
  • 10Hall DL,Llinas J.An introduction to multisensor data fusion.Proc.of the IEEE,1997,85(1):6-23.[doi:10.1109/5.554205].

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部