期刊文献+

基于在线医疗咨询文本的抑郁症症状短语的自动识别

Automatic Identifying the Depression Symptoms fromOnline Medical Consultation Text
下载PDF
导出
摘要 [目的/意义]利用在线医疗咨询文本探索抑郁症症状的自动抽取方法,推进健康大数据的深层次应用。[方法/过程]以在线问诊平台“好大夫在线”的患者问诊记录为语料,选择无监督机器学习法,运用短语识别和深度学习语义建模技术实现抑郁症症状的快速提取。算法通过了测试语料的评估,并在抑郁症典型症状分析和抑郁症人群预测两个任务中得以检验。[结果/结论]运用本文算法识别抑郁症症状短语的准确率为73.85%,模型表现优良。用该方法分析抑郁症患者的典型表现,结论与心理学临床检验结果一致,抑郁症人群预测的精准度则可以达到78.81%。对于3个症状短语的分布表示模型,具备深层次语义表达能力Sentence-BERT表现最好,说明强化短语的语义表达,运用无监督机器学习方法能够实现疾病症状的快速提取,有效提升大规模文本信息的处理能力。 [Purpose/Significance]This study explores how to identify depression symptoms from online medical consultation,which profoundly enhances health big-data utilization and adds data value.[Method/Process]Using the patient consultation text on“HaoDaiFu”,an online medical platform,the study employed unsupervised machine learning,phrase recognition,and deep-learning modeling to identify depression symptoms.The algorithm was evaluated on test data and tested further in two tasks:depression symptom analysis and depression patient identification.[Results/Conclusion]The model s accuracy is 73.85%in the symptom extraction task,indicating it performs well.In the task of analyzing depressed patients features,the conclusion is consistent with the clinical psychological tests,and the accuracy in the task of recognizing depresses patients can reach 78.81%,which verifies the effectiveness of the algorithm.Among the three semantic models describing symptoms,Sentence-BERT performs the best,confirming that strengthening the semantics of symptom phrases and using unsupervised machine learning can extract disease symptoms swiftly and effectively improve the efficiency of processing large-scale textual information.
作者 聂卉 吴晓燕 Nie Hui;Wu Xiaoyan(School of Information Management,Sun Yat-Sen University,Guangzhou 510006,China)
出处 《现代情报》 2023年第9期63-73,共11页 Journal of Modern Information
基金 2022广州社会科学基金项目“双循环新发展格局下粤港澳大湾区社会保障高效协同研究”(项目编号:10000-42220402) 2023广州市哲学社会科学发展“十四五”规划项目“健康中国背景下面向互联网医疗大数据的抑郁症风险预测研究”(项目编号:2023GZGJ259)。
关键词 在线医疗咨询文本 抑郁症 语义建模 短语识别 online medical consultation text depression semantic modeling phrase recognition
  • 相关文献

参考文献5

二级参考文献82

  • 1黄波,刘传才.基于加权TextRank的中文自动文本摘要[J].计算机应用研究,2020,37(2):407-410. 被引量:21
  • 2刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 3孔东林,罗向阳,邓崎皓,罗军勇.基于AC自动机匹配算法的入侵检测系统研究[J].微电子学与计算机,2005,22(3):89-92. 被引量:7
  • 4俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 5TANABE L, WILBUR W J. A priority model for named entities [ C ]//Proc of Human Language Technology Conference. Morristown : Association for Computational Linguistics, 2006 : 33-40.
  • 6GU Bao-hua. Recognizing nested named entities in GENIA corpus [ C ]//Proc of Human Language Technology Conference. Morristown : Association for Computational Linguistics, 2006 : 112-113.
  • 7SUNDHEIM B M. Overview of results of the M UC-6 evaluation [ C ]// Proc of the 6th Conference on Message Under Standing. Morristown: Association for Computational Linguistics, 1996:423-442.
  • 8KIM J, OHTA T, TSURUOKA Y, et al. Introduction to the bio-entity recognition task at JNLPBA[ C ]//Proc of International Workshop on Natural Language Processing in Biomedicine and It's Applications. 2004 : 70 - 75.
  • 9YEH A, MORGAN A, COLOSIMO M, et al. BioCreAtIvE task 1A: gene mention finding evaluation[ J]. BMC Bioinformatics, 2005,6 (1) : S2.
  • 10LEAMAN R, GONZALEZ G. BANNER: an executable survey of advances in biomedical named entity recognition [ C ]//Proc of Pacific Symposium on Biocomputing. 2008:652-663.

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部