期刊文献+

基于红外图像的太阳能面板的缺陷检测

Defect Detection of Solar Panel Based on Infrared Image
下载PDF
导出
摘要 由于太阳能电池板在使用过程中可能存在各种缺陷,因此,缺陷检测对确保太阳能发电的效益至关重要。本文提出了基于红外成像的缺陷检测方法,利用红外相机捕获太阳能电池板表面的温度分布图像,并通过图像处理和分析确定可能存在的缺陷区域。为进一步提高检测精度,本文采用了传统图像处理和卷积神经网络(CNN)相结合的方法,得到了更准确的缺陷检测结果。实验结果表明,该方法可以有效地检测出太阳能电池板表面的缺陷,并具有较高的准确率和较强的鲁棒性。 Due to various defects that may exist during the use of solar panels,defect detection is crucial for ensuring the efficiency of solar power generation.In this paper,a defect detection method based on infrared imaging is proposed.The infrared camera is used to capture the temperature distribution image of the solar panel surface,and the possible defect areas are determined through image processing and analysis.In order to further improve the detection accuracy,this paper uses the combination of traditional image processing and convolutional neural network(CNN)to obtain more accurate defect detection results.The experimental results show that this method can effectively detect defects on the surface of solar panels,and has high accuracy and strong robustness.
作者 周承玮 ZHOU Chengwei(Huizhou Technician Institute,Huizhou,Guangdong 516000,China)
机构地区 惠州市技师学院
出处 《自动化应用》 2023年第14期214-216,共3页 Automation Application
关键词 红外图像 机器视觉 CNN 缺陷检测 infrared image machine vision CNN defect detection
  • 相关文献

参考文献7

二级参考文献51

  • 1王伟,郑永果,卫文学.基于机器视觉的在线电池检测系统研究[J].系统仿真学报,2006,18(z1):425-426. 被引量:16
  • 2黄宏伟.如何选择和使用红外测温仪[J].铁道技术监督,2006,34(4):28-29. 被引量:2
  • 3彭春华,刘建业,刘岳峰,晏磊,郑江华.车辆检测传感器综述[J].传感器与微系统,2007,26(6):4-7. 被引量:46
  • 4QJ2171A-98航天器产品保证要求[S/OL].[2010-2-12]http://www.reliacenter.com/QJ.html.pdf.2008.05.
  • 5C.G.Zimmermann.The impact of mechanical defects on thereliability of solar cells in aerospace applications[J].IEEETransactions on Device and Materials Reliability,2006,6(3):486-494.
  • 6A.Latif-Amet,A.Ertuzun,A.Ercil.An efficient method fortexture defect detection:sub-band domain co-occurrence matrices[J].Image and Vision Computing,2000,18(6-7):543-553.
  • 7N.S.S.Mar,C.Fookes,K.D.V.Prasad.Automatic solderjoint defect classification using the log-Gabor filter[J].AdvancedMaterials Research,2010,97-101:2940-2943.
  • 8M.S.Reis,A.Bauer.Using wavelet texture analysis in image-based classification and statistical process control of paper surfacequality[J].Computer Aided Chemical Engineering,2009,27:1209-1214.
  • 9D.Tsai,B.Hsiao.Automatic surface inspection using waveletreconstruction[J].Pattern Recognition,2001,34(6):1285-1305.
  • 10O.G.Sezer,A.Ertüzün,A.Eril.Independent componentanalysis for texture defect detection[J].Pattern Recognition andImage Analysis,2004,14(2):303-307.

共引文献341

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部