期刊文献+

基于共享经验模态分解的短期用电量预测研究

下载PDF
导出
摘要 针对单特征用电量预测精度较低的问题,提出了一种基于CEEMD-BiLSTM神经网络预测模型,通过CEEMD(共享经验模态分解)算法将原始用电量序列分解为IMFS分量及残差余量,并分别利用BiLSTM(双向长短期记忆网络)模型对CEEMD得到的分量进行预测,通过相加得到预测值。试验结果表明:利用CEEMD-BiLSTM相较于EEMD(集合经验模态分解)-BiLstm、EMD(经验模态分解)-BiLSTM以及BiLSTM模型,预测精度均有了显著提高。
出处 《技术与市场》 2023年第8期65-69,共5页 Technology and Market
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部