摘要
To minimize the vanadium content in the vanadium extraction tailings, composite additive roasting with (CaO + MgO) and subsequent acid leaching process was carried out dealing with vanadium-bearing converter slag. The effect of additive with different MgO/(CaO + MgO) molar ratios on the roasting and leaching behaviours of vanadium slag was investigated, and the optimum process conditions were obtained. The results show that in the roasting experiment, under the conditions of roasting temperature of 850 ℃ and roasting time of 2 h, the main kinds of vanadate transformed from Ca_(2)V_(2)O_(7) to Ca_(5)Mg_(4)V_(6)O_(2)4 and then to Mg_(2)V_(2)O_(7) with the increase in the MgO/(CaO + MgO) molar ratio. In the leaching experiment, under the conditions of particle size less than 75 μm, leaching temperature of 50 ℃, pH of 2.5, liquid–solid ratio of 20:1, and MgO/(CaO + MgO) molar ratio of 1:3, the leaching efficiency of vanadium is increased by about 5%, but the substitution of MgO for most or all of CaO will significantly reduce the leaching efficiency of vanadium. Furthermore, the leaching efficiency of impurities (P and Cr) can also be decreased by a composite addictive (CaO + MgO) roasting process. The X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and X-ray photoelectron spectroscopy of the original vanadium slag and solid products of both roasting and leaching processes were also evaluated.
基金
supported by the National Natural Science Foundation of China(No.52004044)
the Natural Science Foundation of Chongqing(Nos.cstb2022nscq-msx0801 and cstc2019jcyjqX0024)
the Foundation of Chongqing University of Science and Technology(No.ckrc2022030)
the Graduate Research Innovation Project of Chongqing University of Science and Technology(No.YKJCX2220216)
the Science and Technology Innovation Training Program of Chongqing University of Science and Technology(No.2022046)
the College Students'innovation and entrepreneurship training program of Chongqing University of Science and Technology(No.2022007).