期刊文献+

Global Solvability,Pattern Formation and Stability to a Chemotaxis-haptotaxis Model with Porous Medium Diffusion

原文传递
导出
摘要 In this paper,we deal with the following chemotaxis-haptotaxis system modeling cancer invasion with nonlinear diffusion,ut=Δum−χ∇·(u∇v)−ξ∇·(u∇ω)+μu(1−u−ω),inΩ×R^(+),vt−Δv+v=u,inΩ×R+,ωt=−vω,inΩ×R+,whereΩ⊂R^(N)is a bounded domain.We first supplement the results of global existence and uniform boundedness of solutions for the case m=2N N+2.Then for any m>0 and any spatial dimension,we consider the stability of equilibrium,and find that the chemotaxis has a destabilizing effect,that is for the ODEs,or the diffusion-ODE system without chemotaxis,the solutions tend to a linearly stable uniform steady state(1,1,0).When the chemotactic coefficientχis large,the equilibrium(1,1,0)become unstable.Then we study the existence of nontrivial stationary solutions via bifurcation techniques withχbeing the bifurcation parameter,and obtain nonhomogeneous patterns.At last,we also investigate the stability of these bifurcation solutions.
作者 Chun Hua JIN
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第8期1597-1623,共27页 数学学报(英文版)
基金 Supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515010336),NSFC(Grant Nos.12271186,12171166)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部