期刊文献+

An Application of BMO-type Space to Chemotaxis-fluid Equations

原文传递
导出
摘要 We consider a Keller–Segel model coupled to the incompressible Navier–Stokes system in 3-dimensional case.We prove that the system has a unique local solution when(u0,n0,c0)∈Φ_(01)^(1)×Φ_(01)^(2)×Φ_(01)^(3),where Φ_(01)^(1)×Φ_(01)^(2)×Φ_(01)^(3) is a subspace of bmo^(−1)(R^(3))×B˙_(p,∞)^(−2+3/p) (R^(3))×(B˙_(q,∞)^(3/q) (R^(3))∩L^(∞)(R^(3))).Furthermore,we obtain that the system exists a unique global solution for any small initial data(u0,n0,c0)∈BMO^(−1)(R^(3))×B˙_(p,∞)^(−2+3/p)(R^(3))×(B_(q,∞)^(3/q)(R^(3))∩L^(∞)(R^(3))).For the difference between these spaces and known ones,our results may be regarded as a new existence theorem on the system.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第8期1650-1666,共17页 数学学报(英文版)
基金 Supported by NSFC(Grant Nos.12161041 and 12071197) Training Program for academic and technical leaders of major disciplines in Jiangxi Province(Grant No.20204BCJL23057) Natural Science Foundation of Jiangxi Province(Grant No.20212BAB201008)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部