期刊文献+

Real-time Energy Management of Low-carbon Ship Microgrid Based on Data-driven Stochastic Model Predictive Control

原文传递
导出
摘要 With increasing restrictions on ship carbon emis-sions,it has become a trend for ships to use zero-carbon energy such as solar to replace traditional fossil energy.However,uncer-tainties of solar energy and load affect safe and stable operation of the ship microgrid.In order to deal with uncertainties and real-time requirements and promote application of ship zero-carbon energy,we propose a real-time energy management strategy based on data-driven stochastic model predictive control.First,we establish a ship photovoltaic and load scenario set consid-ering time-sequential correlation of prediction error through three steps.Three steps include probability prediction,equal probability inverse transformation scenario set generation,and simultaneous backward method scenario set reduction.Second,combined with scenario prediction information and rolling op-timization feedback correction,we propose a stochastic model predictive control energy management strategy.In each scenario,the proposed strategy has the lowest expected operational cost of control output.Then,we train the random forest machine learn-ing regression algorithm to carry out multivariable regression on samples generated by running the stochastic model predictive control.Finally,a low-carbon ship microgrid with photovoltaic is simulated.Simulation results demonstrate the proposed strategy can achieve both real-time application of the strategy,as well as operational cost and carbon emission optimization performance close to stochastic model predictive control.Index Terms-Data-driven stochastic model predictive control,low-carbon ship microgrid,machine learning,real-time energy management,time-sequential correlation.
出处 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第4期1482-1492,共11页 中国电机工程学会电力与能源系统学报(英文)
基金 supported by the National Natural Science Foundation of China(No.52177110) and the Shenzhen Science and Technology Program(No.JCYJ20210324131409026)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部