期刊文献+

Robust least squares projection twin SVM and its sparse solution 被引量:1

下载PDF
导出
摘要 Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期827-838,共12页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61772020 62202433 62172371 62272422 62036010) the Natural Science Foundation of Henan Province(22100002) the Postdoctoral Research Grant in Henan Province(202103111)。
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部