期刊文献+

盐溶液干湿交替作用下FRP加固梁长期挠度研究

Study on the long-term deflection of FRP-strengthened RC beams subjected to sustained loads and wetting-drying cycles
下载PDF
导出
摘要 通过5根试件研究盐溶液干湿交替作用下纤维增强聚合物(FRP)加固钢筋混凝土梁的长期变形性能,持载水平为未加固梁极限荷载的30%或60%,FRP种类考虑CFRP和GFRP,盐溶液干湿交替天数为360 d,分析不同持载水平、FRP种类对加固梁长期挠度、裂缝宽度等影响规律。试验结果表明:加固梁前期挠度增长较快,后期趋于稳定;其长期挠度随荷载水平的增加而增大;CFRP加固梁长期挠度小于GFRP加固梁;持载水平为60%极限荷载的CFRP加固梁裂缝宽度总体小于GFRP加固梁;基于试验结果,考虑盐溶液干湿交替作用对FRP材料性能的影响,给出了FRP加固混凝土梁长期挠度计算方法,其计算值与试验值吻合较好。 Five reinforced concrete(RC)beams strengthened with fiber-reinforced polymer(FRP)sheets were subjected to wetting-drying cycles and a sustained load(for 360 days at load levels of 30%,and 60%of the ultimate loading capacity of the un-strengthened beam and the types of FRP consisted of CFRP and GFRP).An experimental study was designed to investigate the impacts of different loading levels and the types of FRP on the long-term deflections of strengthened RC beams and the crack width.The test results showed that the deflection of the FRP-strengthened RC beams increased rapidly at the early stage and tended to be stable at the later stage.The long-term deflections of the FRP-strengthened RC beams increased with the increase in load levels.The long-term deflections of CFRP is smaller than that of GFRP.The crack width of the 60%ultimate loading CFRP is generally smaller than that of the GFRP.Based on the test results and considering the effect of the wetting-drying cycles on the properties of FRP,a calculation model for the long-term deflection of FRP-strengthened RC beams is given,and the calculated values are in good agreement with the experimental values.
作者 陈淼 卢亦焱 赵芹 李杉 李臻 CHEN Miao;LU Yiyan;ZHAO Qin;LI Shan;LI Zhen(School of Civil Engineering,Wuhan University,Wuhan 430072,China)
出处 《混凝土》 CAS 北大核心 2023年第7期34-38,共5页 Concrete
基金 国家自然科学基金面上项目(51778507)。
关键词 RC梁 FRP加固 干湿交替作用 长期挠度 RC beams FRP strengthening wetting-drying cycles long-term deflections
  • 相关文献

参考文献4

二级参考文献26

  • 1吕小军,张琦,马兆庆,许俊华,肖文萍.湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J].材料工程,2005,33(11):50-53. 被引量:74
  • 2Dutta P K, Hui D. Low-temperature and freeze-thaw durability of thick composite [J]. Composite Part B, 1996, 27(3): 371-379.
  • 3Karbhari V M, ASCE M. Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes [J]. Journal of Composite for Construction, 2002, 6(1): 35-40.
  • 4Lord H W, Durra P K. On the design of polymeric composite structures for cold regions applications [J]. Journal of Reinforced Plastic Composite, 1988, 7(5):435-458.
  • 5Karbhari V M, Rivera J, Dutta P K. Effect of short-term freeze-thawcycling on composite confined concrete [J]. Journal of Composite for Construction, 2000, 4(4): 191-197.
  • 6Rivera J, Karbhari V M. Cold-temperature and simultaneous aqueous environment related degradation of carbon/vinylester composite [J]. Composite Part B, 2002, 33(1): 17-24.
  • 7Karbhari V M, Pope G. Impact and flexure properties of glass/vinglester composites in cold regions [J]. Journal of Cold Regions Engineering, 1994, 8(1): 1-20.
  • 8Karbhari V M, ASCE M. Response of fiber reinforced polymer conf'med concrete exposed to freeze and freeze-thaw regimes [J]. Journal of Composite for Construction, 2002, 6(1): 35-40.
  • 9Dutta P K. Structural fiber composite materials for cold regions [J]. Journal of Cold Regions Engineering, 1988, 2(2): 124-134.
  • 10An Y. Durability of glass fiber/vinyl ester composites as bridge deck subject to weathering conditions [D]. Michigan, Detroit: Wayne State University, 2005: 79- 87.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部