摘要
随着深度学习的快速发展,目标检测网络模型在SAR图像舰船检测取得了很大的成功。为了取得更好的效果,往往采取规模很大的检测网络,这需要更多的计算资源并且推理更慢。知识蒸馏能够有效地压缩网络,但当前的知识蒸馏大都是对于图像分类问题。在分析SAR图像中舰船与背景差异的基础上,提出局部与全局蒸馏的舰船目标检测方法。考虑到舰船在SAR图像中的散射特性,对舰船样本数据进行幅值方向的切片预处理,作为具有更显著散射特性的单独数据通道,提升了网络输入数据的质量。利用SSDD(SAR ship detection dataset)舰船数据集开展目标检测实验和评估。实验结果表明,所提出的方法能够在轻量化网络下,提升舰船检测性能,mAP能达到90.7%。
With the rapid development of deep learning,the object detection network model hsa achieved great success in ship detection from synthetic aperture radar(SAR)images.In order to achieve better results,a large detection network is usually adopted,which requires more computing resources and slower inference.Knowledge distillation can effectively compress the network,but most of them are for image classification.Considering the difference between ships and background in SAR images,this paper proposes a combining local and global distillation method for ship detection.Considering the scattering characteristics of ships in SAR images,slice preprocessing in the amplitude direction is performed on the ship sample data constructing a separate data channel with more significant scattering characteristics,which improves the quality of input data fed to the network.Experimental results based on SAR ship detection dataset(SSDD)show that the proposed approach can effectively reduce the price of the network model and improve the detection performance,achieving 90.7%mAP.
作者
李洋
梁潇
贾海萨
LI Yang;LIANG Xiao;JIA Haisa(PLA 92941 Troops,Huludao 125000,China)
出处
《现代防御技术》
北大核心
2023年第4期78-85,共8页
Modern Defence Technology
关键词
合成孔径雷达
目标检测
舰船
深度学习
知识蒸馏
synthetic aperture radar(SAR)
object detection
ship
deep learning
knowledge distillation