摘要
为解决矿业工程学科的知识组织中数据的异构性与稀疏性问题,构建一种可持续动态更新的矿业工程学科知识图谱。通过设计一种矿业工程学科的知识图谱本体模式,采用基于深度学习模型的知识抽取模型从多源异构数据源中获取领域知识,给出多特征的知识融合算法,实现了矿业工程学科知识图谱的知识扩展。结果表明,矿业工程学科知识图谱的构建方法的F_(1)值达到96.3%,融合方法的F_(1)值达到98.2%,可有效支持知识图谱动态持续构建以及学科热点等关联知识的可视化分析。
This paper aims to solve the problem of relevance and continuity in the knowledge organization of mining engineering disciplinary due to the heterogeneity and sparsity of data,and to construct a sustainable and dynamic updating knowledge graph of mining engineering disciplinary.The study involves designing an ontology mode of Knowledge graph of mining engineering disciplinary;combining the knowledge extraction model based on deep learning model to obtain domain knowledge from multi-source heterogeneous data sources;and proposing a multi feature knowledge fusion algorithm,as which realizes the knowledge expansion method of mining engineering discipline knowledge graph.The results show that the proposed methods with F_(1) 96.3% on knowledge graph construction,F_(1) 98.2% on knowledge fusion can dynamically update knowledge graph and visualize disciplinary hotspots analysis effectively.
作者
王海玲
康华
刘兴丽
范俊杰
Wang Hailing;Kang Hua;Liu Xingli;Fan Junjie(School of Computer&Information Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China;School of Mining Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China)
出处
《黑龙江科技大学学报》
CAS
2023年第4期561-566,580,共7页
Journal of Heilongjiang University of Science And Technology
基金
科技创新2030-“新一代人工智能”重大项目(2021ZD0113304)
黑龙江省省属高等学校基本科研业务费项目(2022-KYYWF-0569)。
关键词
矿业工程
知识图谱
深度学习模型
knowledge graph
mining engineering
deep learning model