期刊文献+

一种基于事件触发的异构WSN分布式定位方法 被引量:1

An Event-Triggering Distributed Positioning Method of A Heterogeneous WSN
下载PDF
导出
摘要 由于电磁波传输的多径效应和信号干扰,基于接收信号强度(RSS)测距的室内定位精度较低,本文提出一种融合RSS和惯性测量的异构无线传感器网络(WSN)室内定位方案,它采用基于位置估计信任度的分布式一致性容积信息滤波算法(CCIF)来协同估计目标的位置;引入事件触发机制,基于RSS信号强度触发WSN节点唤醒,以提高网络的抗干扰性和降低网络能耗。室内移动小车的定位仿真和实验测试结果表明,所提出的WSN融合定位精度明显优于单一定位方法,具有显著的抗干扰性能,且分布式定位和事件触发机制可有效地降低网络能耗。 Due to multi-path effect and electromagnetic interference,RSS-based indoor positioning systems has lower accuracy.Aiming at this shortcoming,this paper proposes an indoor positioning scheme of a heterogeneous wireless sensor network(WSN)by integrating RSS and inertial measurement.The distributed consensus cubature information filters with credibility evaluation is utilized to estimate target positions collaboratively.An event-triggering mechanism is introduced to awaken the sensor nodes when the strength of RSS signals are satisfied for improving the network anti-interference and reduce network energy consumption.It is shown from the simulation and experiment results via mobile cars that the proposed method has higher positioning accuracy than a single positioning method,and remarkable anti-interference performance.Moreover,the distributed positioning scheme and event-triggering mechanism can effectively reduce network energy consumption.
作者 范玮 刘济 FAN Wei;LIU Ji(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期554-561,共8页 Journal of East China University of Science and Technology
基金 国家自然科学基金(61971278)。
关键词 无线传感器网络 室内定位 事件触发机制 一致性容积信息滤波 wireless sensor network indoor positioning event-triggering mechanism consensus cubature information filter
  • 相关文献

参考文献4

二级参考文献36

  • 1Carli R, Chiuso A, Schenato L, et al. Distributed Kalman filtering based on consensus strategies[J]. IEEE J Selected Areas Communication, 2008, 26(4): 622-633.
  • 2Ren W, Beard R W, Atldns E M. Information consensus in multivehicle cooperative control[J]. IEEE Control System Magazine, 2007, 27(2): 71-82.
  • 3Olfati-Saber R. Distributed Kalman filter with embedded consensus filters[C]. Proc of the 44th IEEE Conf on Decision and Control and the European Control. Seville: IEEE, 2005: 8179-8184.
  • 4Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion[C]. Proc of the 44th IEEE Conf on Decision and Control and the European Control. Seville: IEEE, 2005: 6698-6703.
  • 5Olfati-Saber R. Distributed Kalman filtering for sensor networks[C]. Proc of the 46th IEEE Conf on Decision and Control. New Orleans: IEEE, 2007: 5492-5498.
  • 6Anderson B D O, Moore J B. Optimal filtering[M]. Englewood Cliffs: Prentice-Hall, 1979: 138-142.
  • 7Li W L, Jia Y M. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise[J]. Signal Processing, 2012, 92(10): 2464-2470.
  • 8Li W L, Jia Y M. Consensus-based distributed multiple model ukf for jump markov nonlinear systems[J]. IEEE Trans on Automatic Control, 2012, 57(1): 230-236.
  • 9Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans on Automatic Control, 2009, 54(6): 1254- 1269.
  • 10Liu Jiang, Cai Bai-gen, Tang Tao, et al. A CKF based GNSS/INS train integrated positioning method[C]. Int Conf on Mechatronics and Automation. IEEE, 2010: 1686- 1689.

共引文献38

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部