期刊文献+

基于CvT-13和多模态图像融合的心电分类算法 被引量:1

Electrocardiogram classification algorithm based on CvT-13 and multimodal image fusion
原文传递
导出
摘要 心电(ECG)信号是心律失常和心肌梗死诊断的重要依据。为进一步提升心律失常和心肌梗死分类效果,提出了一种基于Convolutional vision Transformer(CvT)和多模态图像融合的心电分类算法。通过格拉姆求和角场(GASF)、格拉姆差分角场(GADF)和递归图(RP)将ECG一维信号转化成三种不同模态的二维图像,并融合生成包含了更多特征的多模态融合图像。CvT-13模型对融合后的图像进行处理可以兼顾局部和全局信息,从而有效提升了分类性能。在MIT-BIH心律失常数据集和PTB心肌梗死数据集上,该算法对五种心律失常分类的综合准确率达到99.9%,对心肌梗死分类的综合准确率达到99.8%。实验表明,高精度计算机辅助的智能分类方法具有一定的优越性,可以有效提高心律失常以及心肌梗死等心脏疾病的诊断效率。 Electrocardiogram(ECG)signal is an important basis for the diagnosis of arrhythmia and myocardial infarction.In order to further improve the classification effect of arrhythmia and myocardial infarction,an ECG classification algorithm based on Convolutional vision Transformer(CvT)and multimodal image fusion was proposed.Through Gramian summation angular field(GASF),Gramian difference angular field(GADF)and recurrence plot(RP),the one-dimensional ECG signal was converted into three different modes of two-dimensional images,and fused into a multimodal fusion image containing more features.The CvT-13 model could take into account local and global information when processing the fused image,thus effectively improving the classification performance.On the MIT-BIH arrhythmia dataset and the PTB myocardial infarction dataset,the algorithm achieved a combined accuracy of 99.9%for the classification of five arrhythmias and 99.8%for the classification of myocardial infarction.The experiments show that the high-precision computer-assisted intelligent classification method is superior and can effectively improve the diagnostic efficiency of arrhythmia as well as myocardial infarction and other cardiac diseases.
作者 李国权 朱双青 刘梓潼 林金朝 庞宇 LI Guoquan;ZHU Shuangqing;LIU Zitong;LIN Jinzhao;PANG Yu(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China;Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmission Technology,Chongqing 400065,P.R.China)
出处 《生物医学工程学杂志》 EI CAS 北大核心 2023年第4期736-742,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金(U21A20447) 重庆市自然科学基金创新群体科学基金(cstc2020jcyj-cxttX0002)。
关键词 心电信号 心律失常分类 心肌梗死 多模态图像融合 CvT-13 Electrocardiography Classification of arrhythmias Myocardial infarction Multimodal image fusion CvT-13
  • 相关文献

参考文献11

二级参考文献40

共引文献65

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部